Efektivitas Komposit Material Overburden Batubara, Zeolit, dan Arang Aktif Tempurung Kelapa Sebagai Adsorben Besi dalam Air Asam Tambang

Authors

  • Mycelia Paradise Institut Teknologi Nasional Yogyakarta (ITNY)
  • Edy Nursanto UPN "Veteran" Yogyakarta
  • Nurkhamim UPN "Veteran" Yogyakarta

DOI:

https://doi.org/10.52562/injoes.v1i1.34

Keywords:

adsorpsi, komposit, efektivitas, kapasitas

Abstract

Abstrak: Penelitian ini mempelajari penyerapan Fe dari air asam tambang yang berasal dari lokasi penambangan batubara. Adsorben yang digunakan dalam penelitian ini yaitu kombinasi antara claystone, zeolit, dan arang aktif tempurung kelapa. Adsorben tersebut harus diaktivasi terlebih dahulu untuk membersihkan pengotor di permukaannya sehingga luas permukaannya meningkat. Aktivasi claystone dilakukan dengan 3M NaOH, zeolit dengan 3M HCl, dan arang tempurung kelapa dengan 4M HCl. Komposit dibuat dengan mencampurkan ketiga adsorben dengan  perbandingan (Claystone[C]: Zeolit[Z]: Arang aktif[A]) = 25:25:50. Hasil uji luas permukaan menunjukkan bahwa komposit memiliki luas permukaan 62,44 m2/g. Adsorpsi dilakukan dengan sistem batch menggunakan alat hot plate stirer pada variasi waktu kontak 30, 60, 90, 120, dan 150 menit. Berdasarkan hasil uji adsorpsi,  7,5 gram komposit  mampu menurunkan konsentrasi Fe dengan efektivitas 99,61%  dan kapasitas adsorpsi 0,432 mg/g pada waktu kontak 30 menit. 

Kata Kunci: adsorpsi, komposit, efektivitas, kapasitas

Abstract: This research studied adsorption iron (Fe) from acid mine drainage in coal mining. Adsorbent used in this research is the combination of activated claystone, activated zeolite, and ativated carbon from coconut shell. The adsorbents need to be activated to remove the impurities from its surface and improved its surface area. Claystone was activated using 3M NaOH, 3M HCl for zeolite, and 4M HCl for coconut shell. Composite was made by mixing claystone, zeolite, and coconut shell with 3 ratio (claystone [C], zeolite [Z], activated carbon [A]) = 25:25:50. The result of surface area analyzer showed that the surface area of composite was 62,44 m2/g. Adsorption with batch system was carried out using hot plate stirer on 30,60, 90, 120, and 150 minutes of contact time. Adsorption result showed that 7,5 gram of composite succeded decreasing iron metal concentration with 99,61%  effectiveness and 0,432 mg/g adsorption capacity on 30 minutes of contact time.

Keywords: adsorption, composite, efectiveness, capacity

References

Balintova, M., Holub, M., Stevulova, N., Cigasova, J., & Tesarcikova, N. (2014). Sorption in Acidic Environment – Biosorbents in Comparison with Commercial Adsorbents. Chemical Engineering Transactions, 39, 625-630.[CrossRef]

Catri, C. R. (2016). The Effectiveness of Natural Zeolite as Metal Absorbent Copper (II) in Pool Water With Coloumn Adsorption Method. Jurnal Penelitian Saintek, 21(2), 87-95. [CrossRef]

Gobel, A.P. (2018). Efektifitas Pemanfaatan Fly Ash Batubara Sebagai Adsorben Dalam Menetralisir Air Asam Tambang Pada Settling Pond Penambangan Banko (PT. Bukit Asam Persero). Tbk. Jurnal Mineral Energi dan Lingkungan , 2(1), 1-11. [CrossRef]

Li, W., Peng, J., Zhang, L., Yang, K., Xia, H., Zhang, S., & Guo, S. H. (2009). Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW. Waste management, 29(2), 756-760. [CrossRef]

Martini, T., Astuti, F., & Maharditya, W. (2020). Test The Effectiveness and Characterization of Quartz Sand/Coconut Shell Charcoal Composite as Adsorbent of Manganese Heavy Metal. In IOP Conference Series: Materials Science and Engineering (Vol. 858, No. 1, p. 012041). IOP Publishing. [CrossRef]

Mgbemena, C. O., Ibekwe, N. O., Sukumar, R., & Menon, A. R. (2013). Characterization of kaolin intercalates of oleochemicals derived from rubber seed (Hevea brasiliensis) and tea seed (Camelia sinensis) oils. Journal of King Saud University-Science, 25(2), 149-155. [CrossRef]

Mukarrom, F., Karsidi, R., Gravitiani, E., Astuti, F., & Maharditya, W. (2020). The assessment of claystone, quartz and coconut shell charcoal for adsorbing heavy metals ions in acid mine drainage. IOP Conference Series: Materials Science and Engineering (Vol. 858, No. 1, p. 012040). IOP Publishing. [CrossRef]

Musso, T. B., Parolo, M. E., Pettinari, G., & Francisca, F. M. (2014). Cu (II) and Zn (II) adsorption capacity of three different clay liner materials. Journal of environmental management, 146, 50-58. [CrossRef]

Nwosu, F. O., Ajala, O. J., Owoyemi, R. M., & Raheem, B. G. (2018). Preparation and characterization of adsorbents derived from bentonite and kaolin clays. Applied Water Science, 8(7), 195. [CrossRef]

Tan, I. A. W., Abdullah, M. O., Lim, L. L. P., & Yeo, T. H. C. (2017). Surface modification and characterization of coconut shell-based activated carbon subjected to acidic and alkaline treatments. Journal of Applied Science & Process Engineering, 4(2), 186-194.

Downloads

Published

2021-06-20

How to Cite

Paradise, M., Nursanto, E., & Nurkhamim, N. (2021). Efektivitas Komposit Material Overburden Batubara, Zeolit, dan Arang Aktif Tempurung Kelapa Sebagai Adsorben Besi dalam Air Asam Tambang . Indonesian Journal of Earth Sciences, 1(1), 28-35. https://doi.org/10.52562/injoes.v1i1.34

Issue

Section

Articles