Investigation of Seasonal and Annual Wind Speed Distribution of Tarnab Based on Weibull and Rayleigh Distribution Models

Authors

  • Aamir Khan Agriculture Research Institute Tarnab, Peshawar 25000, Pakistan
  • Amna Shafi Agriculture Research Institute Tarnab, Peshawar 25000, Pakistan

DOI:

https://doi.org/10.52562/injoes.2024.1037

Keywords:

Wind speed, Weibull distribution, Rayleigh distribution, shape factor, scale factor

Abstract

This study aims to statistically analyze wind speed data of Tarnab, Peshawar, for the period 2004-2023. The data was recorded at the Agriculture Research Institute, Tarnab, Peshawar. Two statistical models (two-parameter Weibull and Rayleigh distribution functions) were applied to find the distributions of wind speeds. For the estimation of shape and scale parameters of Weibull and Rayleigh, two methods were employed: the method of moments and the energy pattern factor. Three statistical tools (mean percentage error, mean absolute percentage error, and root mean square deviation) were applied to check the error percentage of both models. The results of the Weibull distribution were much closer to the observed data than those of the Rayleigh distribution. The average values of wind speeds tended to increase from winter to summer and vice versa. The highest recorded annual and seasonal wind speeds were 26.19 in/s and 41.57 in/s, respectively, while the lowest values were 7.11 in/s and 4.95 in/s, respectively. Thus, while ruling out the possibility of harnessing wind as a significant source of energy, the findings are still useful for the crops produced in the region.

Downloads

Download data is not yet available.

References

Adnan, M., Ahmad, J., Ali, S. F., & Imran, M. (2021). A techno-economic analysis for power generation through wind energy: A case study of Pakistan. Energy Reports, 7, 1424-1443. https://doi.org/10.1016/j.egyr.2021.02.068

Ahmad, T., Ahmad, I., Arshad, I. A., & Almanjahie, I, M. (2023). An efficient Bayesian modelling of extreme winds in the favour of energy generation in Pakistan. Energy Reports, 9, 2980-2992. https://doi.org/10.1016/j.egyr.2023.01.093

Akda?, S. A., & Güler, Ö. (2015). A novel energy pattern factor method for wind speed distribution parameter estimation. Energy Conversion and Management, 106, 1124-1133. http://doi.org/10.1016/j.enconman.2015.10.042

Akgül, F. G., ?eno?lu, B., & Arslan, T. (2016). An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution. Energy Conversion and Management, 114, 234-240. https://doi.org/10.1016/j.enconman.2016.02.026

Albani, A., Ghani, S. S. A., Ibrahim, M. Z., Yusop, Z. M., Jusoh, M. A., Musa, M. A., & Yong, K. H. (2024). Three-Parameter Weibull for Offshore Wind Speed Distribution in Malaysia. Journal of Advanced Research in Applied Sciences and Engineering Technology, 39(1), 149-158. https://doi.org/10.37934/araset.39.1.149158

Ali, B., Abbas, G., Memon, A., Mirsaeidi, S., Koondhar, M. A., Chandio, S., & Channa, I. A. (2023). A comparative study to analyze wind potential of different wind corridors. Energy Reports, 9, 1157-1170. https://doi.org/10.1016/j.egyr.2022.12.048

Azhar, N., Iqbal, S., Nasir, S. M., Akhtar, F., Sarwar, F., & Rehman, A. (2019). Wind Data Analysis of Coastal Region of Balochistan (Pakistan) by Weibull and Rayleigh Method. Indian Journal of Science and Technology, 12(26), 1-8. https://doi.org/10.17485/ijst/2019/v12i26/119483

Bilir, L., Imir, M., Devrim, Y., & Albostan, A. (2015). Seasonal and yearly wind speed distribution and wind power density analysis based on Weibull distribution function. International Journal of Hydrogen Energy, 40(44), 15301-15310. https://doi.org/10.1016/j.ijhydene.2015.04.140

Deep, S., Sarkar, A., Ghawat, M., & Rajak, M. K. (2020). Estimation of the wind energy potential for coastal locations in India using the Weibull model. Renewable Energy, 161, 319-339. https://doi.org/10.1016/j.renene.2020.07.054

Guarienti, J. A., Almeida, A. K., Neto, A. M., de Oliveira Ferreira, A. R., Ottonelli, J. P., & de Almeida, I. K. (2020). Performance analysis of numerical methods for determining Weibull distribution parameters applied to wind speed in Mato Grosso do Sul, Brazil. Sustainable Energy Technologies and Assessments, 42, 100854. https://doi.org/10.1016/j.seta.2020.100854

Hasan, M., Dey, P., & Khan, I. J. (2022). Assessment of Promising Wind Energy Production Sites in Bangladesh using Energy Pattern Factor Method. In 2022 International Conference on Energy and Power Engineering (ICEPE) (pp. 1-4). IEEE. https://doi.org/10.1109/ICEPE56629.2022.10044895

Hulio, H. Z. (2021). Assessment of wind characteristics and wind power potential of gharo, Pakistan. Journal of Renewable Energy, 2021, 1-17. https://doi.org/10.1155/2021/8960190

Hussain, I., Haider, A., Ullah, Z., Russo, M., Casolino, G. M., & Azeem, B. (2023). Comparative analysis of eight numerical methods using Weibull distribution to estimate wind power density for coastal areas in Pakistan. Energies, 16(3), 1515. https://doi.org/10.3390/en16031515

Ikbal, N. A. M., Halim, S. A., & Ali, N. (2022). Estimating Weibull parameters using maximum likelihood estimation and ordinary least squares: Simulation study and application on meteorological data. Mathematics and Statistics, 10(2), 269-292. https://doi.org/10.13189/ms.2022.100201

Jalal, A., & Ali, U. (2022). Assessment of Wind Speed and Power Density Using Weibull and Rayleigh Distributions at Turbat, Balochistan, Pakistan. International Journal of Thermal & Environmental Engineering, 19(2), 77-85. https://doi.org/10.5383/ijtee.19.02.004

Jung, C., & Schindler, D. (2019). Wind speed distribution selection–A review of recent development and progress. Renewable and Sustainable Energy Reviews, 114, 109290. https://doi.org/10.1016/j.rser.2019.109290

Khan, T., Ahmad, I., Wang, Y., Salam, M., Shahzadi, A., & Batool, M. (2022). Comparison approach for wind resource assessment to determine the most precise approach. Energy & Environment, 35(3), 1315-1338. https://doi.org/10.1177/0958305X221135981

Khatri, S. A., Harijan, K., Uqaili, M. A., Shah, S. F., Mirjat, N. H., & Kumar, L. (2022). A Logistic Modelling Analysis for Wind Energy Potential Assessment and Forecasting its Diffusion in Pakistan. Frontiers in Energy Research, 10, 860092. https://doi.org/10.3389/fenrg.2022.860092

Koroglu, T., & Ekici, E. (2024). A Comparative Study on the Estimation of Wind Speed and Wind Power Density Using Statistical Distribution Approaches and Artificial Neural Network-Based Hybrid Techniques in Çanakkale, Türkiye. Applied Sciences, 14(3), 1267. https://doi.org/10.3390/app14031267

Malik, M. Z., Baloch, M. H., Ali, B., Khahro, S. H., Soomro, A. M., Abbas, G., & Zhang, S. (2021). Power supply to local communities through wind energy integration: an opportunity through China-Pakistan economic corridor (CPEC). IEEE Access, 9, 66751-66768. https://doi.org/10.1109/ACCESS.2021.3076181

Manzoor, M., Khan, A., Sohail, A., Ali, S., Shah, F. A., Iqbal, J., Khan, M. O., & Nawaz, S. (2020). Corn Yield Response to Deficit Irrigation During Low and High Sensitive Growth Stages and Planting Methods under Semi-Arid Climatic Conditions. Sarhad Journal of Agriculture, 36(1), 21-32. https://doi.org/10.17582/journal.sja/2020/36.1.21.32

Parajuli, A. (2016). A statistical analysis of wind speed and power density based on Weibull and Rayleigh models of Jumla, Nepal. Energy and Power Engineering, 8, 271-282. https://10.4236/epe.2016.87026

Pobo?íková, I., Michalková, M., Sedlia?ková, Z., & Jurášová, D. (2023). Modelling the wind speed using exponentiated Weibull distribution: case study of Poprad-Tatry, Slovakia. Applied Sciences, 13(6), 4031. https://doi.org/10.3390/app13064031

Rajput, A. A., Daniyal, M., Zahid, M. M., Nafees, H., Shafi, M., & Uddin, Z. (2022). New approach to calculate Weibull parameters and comparison of wind potential of five cities of Pakistan. Advances in Energy Research, 8(2), 95. https://doi.org/10.12989/eri.2022.8.2.095

Saeed, M. A., Ahmed, Z., & Zhang, W. (2020). Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters. Renewable Energy, 161, 1092-1109. https://doi.org/10.1016/j.renene.2020.07.064

Saeed, M. A., Ahmed, Z., Hussain, S., & Zhang, W. (2021). Wind resource assessment and economic analysis for wind energy development in Pakistan. Sustainable Energy Technologies and Assessments, 44, 101068. https://doi.org/10.1016/j.seta.2021.101068

Sarkar, A., Gugliani, G., & Deep, S. (2017). Weibull model for wind speed data analysis of different locations in India. KSCE Journal of Civil engineering, 21, 2764-2776. https://doi.org/10.1007/s12205-017-0538-5

Shoaib, M., Siddiqui, I., & Rehman, S. U. (2019). Determination of yearly wind energy potential and extraction of wind energy using wind Turbine for coastal Cities of Baluchistan, Pakistan. International Journal of Economic and Environmental Geology, 10(3), 56-63. https://doi.org/10.46660/ojs.v10i3.309

Shonhiwa, C., Makaka, G., Mukumba, P., & Shambira, N. (2023). Investigation of Wind Power Potential in Mthatha, Eastern Cape Province, South Africa. Applied Sciences, 13(22), 12237. https://doi.org/10.3390/app132212237

Sumair, M., Aized, T., Gardezi, S. A. R., Bhutta, M. M. A., Rehman, S. M. S., & Ur Rehman, S. U. (2021). Comparison of three probability distributions and techno-economic analysis of wind energy production along the coastal belt of Pakistan. Energy Exploration & Exploitation, 39(6), 2191-2213. https://doi.org/10.1177/0144598720931587

Suwarno, S., & Zambak, M. F. (2021). The probability density function for wind speed using modified Weibull distribution. International Journal of Energy Economics and Policy, 11(6), 544–550. https://doi.org/10.32479/ijeep.11625

Tahir, Z. U. R., Kanwal, A., Afzal, S., Ali, S., Hayat, N., Abdullah, M., & Saeed, U. B. (2021). Wind energy potential and economic assessment of southeast of Pakistan. International Journal of Green Energy, 18(1), 1-16. https://doi.org/10.1080/15435075.2020.1814298

Wadi, M., & Elmasry, W. (2021). Statistical analysis of wind energy potential using different estimation methods for Weibull parameters: a case study. Electrical Engineering, 103(6), 2573-2594. https://doi.org/10.1007/s00202-021-01254-0

Wang, S., Zhang, Y., Waring, M., & Lo, L. J. (2018). Statitical analysis of wind data using Weibull distribution for natural ventilation system. Science and Technology for the Built Environment, 24, 922-932. https://doi.org/10.1080/23744731.2018.1432936

Younis, A., Elshiekh, H., Osama, D., Shaikh-Eldeen, G., Elamir, A., Yassin, Y., Omer, A., & Biraima, E. (2023). Wind Speed Forecast for Sudan Using the Two-Parameter Weibull Distribution: The Case of Khartoum City. Wind, 3(2), 213-231. https://doi.org/10.3390/wind3020013

Downloads

Published

2024-06-18

How to Cite

Khan, A., & Shafi, A. (2024). Investigation of Seasonal and Annual Wind Speed Distribution of Tarnab Based on Weibull and Rayleigh Distribution Models. Indonesian Journal of Earth Sciences, 4(1), A1037. https://doi.org/10.52562/injoes.2024.1037