Delineating Structural Features Related to Hydrothermal Alterations for Possible Mineralization in Share Area, Kwara State Nigeria Using Aeromagnetic Data

Authors

  • Warith Adewale Adebisi Department of Physical and Chemical Sciences, Federal University of Health Sciences, Ila-Orangun, Osun State, Nigeria
  • Ismail Oluwaseye Folorunso Department of Geophysics, University of Ilorin, Ilorin, Nigeria
  • Hussain Olanrewaju Abubakar Department of Geophysics, University of Ilorin, Ilorin, Nigeria
  • Saminu Olatunji Department of Geophysics, University of Ilorin, Ilorin, Nigeria
  • Michael Opeoluwa Olaojo Department of Geophysics, University of Ilorin, Ilorin, Nigeria

DOI:

https://doi.org/10.52562/injoes.2024.1265

Keywords:

Hydrothermal Alteration, Enhancement techniques, Upward continuation, Analytic signal, Tilt derivative, Hydrothermal Vents, Tectonic activity

Abstract

Mineral deposits of significant economic value are abundant in the subsurface of Nigeria, presenting a promising alternative to the nations over dependence on petroleum revenues. This study interprets aeromagnetic data from Share, Kwara State, Nigeria, to delineate subsurface structural features associated with hydrothermal zones, which are key indicators for potential mineralization. The methodologies applied upward continuation, analytic signal, tilt derivative, and first vertical derivative (FVD). These offer insights into subsurface geology that can be broadly applied in geophysical exploration and mineral resource management. The results reveal structural trends predominantly in the NE–SW direction, with some NW–SE alignments, indicative of hydrothermal alterations linked to mineral deposits. The analytical signal map identified amplitude values ranging from 0.004 nT/m to 0.073 nT/m, with low and intermediate magnetic intensities linked to sediment-filled basement rocks and possible limestone and sandstone formations. High-gradient anomalies, 1.280 nT/m to 1.374 nT/m, were attributed to geological contacts, fractures, dykes, and hydrothermal vents. Depth estimates from the source parameter imaging map revealed hydrothermal and structural zones at depths ranging from 287.9 m to 1360.7 m, with deeper sources >1202.1 m indicating tectonic activity and mineralization potential. The FVD and Tilt Derivative maps further highlighted faulted zones, shear structures, and intrusive bodies with intensities between 0.031 nT/m and 0.041 nT/m, suggesting active tectonics. High magnetic anomalies in the central, northeastern, and southeastern regions were identified as prime targets for exploration, indicating magnetite-rich bodies, igneous intrusions, and hydrothermal zones. Integrated exploration strategies combining geophysical, geochemical, and structural data are recommended to refine anomaly delineation, prioritize field validation, and enhance mineralization discovery. These findings establish the Share area as a promising site for regional mineral exploration, supporting Nigeria’s diversification efforts toward sustainable resource development.

Downloads

Download data is not yet available.

References

Abdelrady, M., Moneim, M. A., Alarifi, S. S., Abdelrady, A., Othman, A., Mohammed, M. A. A., & Mohamed, A. (2023). Geophysical investigations for the identification of subsurface features influencing mineralization zones. Journal of King Saud University - Science, 35(7), 102809. https://doi.org/10.1016/j.jksus.2023.102809

Abraham, E. M., Uwaezuoke, A. E., & Usman, A. O. (2024). Geophysical investigation of subsurface mineral potentials in North-Central Nigeria: Implications for sustainable mining and development. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1), 192. https://doi.org/10.1007/s40948-024-00913-3

Abuelnaga, H. S. O., Aboud, E., Harbi, H. M., Alqahtani, F. A., & Qaddah, A. A. Z. (2020). Delineating flood hazards using the interpreted structural setting and GIS in Attaif, western Saudi Arabia. Arabian Journal of Geosciences, 13(5), 230. https://doi.org/10.1007/s12517-020-5124-3

Adebayo, S., & Obasaju, D. (2021). Geological and Geochemical Prospecting for Gold Mineralization in Bode-Saadu Axis, Southwestern Nigeria. GeoScience Engineering, 67(3), 64–76. https://doi.org/10.35180/gse-2021-0053

Adewumi, T., & Salako, K. A. (2018). Delineation of mineral potential zone using high resolution aeromagnetic data over part of Nasarawa State, North Central, Nigeria. Egyptian Journal of Petroleum, 27(4), 759–767. https://doi.org/10.1016/j.ejpe.2017.11.002

Al-Badani, M. A., & Al-Wathaf, Y. M. (2018). Using the aeromagnetic data for mapping the basement depth and contact locations, at southern part of Tihamah region, western Yemen. Egyptian Journal of Petroleum, 27(4), 485–495. https://doi.org/10.1016/j.ejpe.2017.07.015

Andongma, W. T., Gajere, J. N., Amuda, A. K., Digne Edmond, R. R., Faisal, M., & Yusuf, Y. D. (2021). Mapping of hydrothermal alterations related to gold mineralization within parts of the Malumfashi Schist Belt, North-Western Nigeria. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 401–417. https://doi.org/10.1016/j.ejrs.2020.11.001

Balogun, O. B., Akereke, O. F., & Nwobodo, A. D. (2023). Understanding the Constraints to the Correct Application of the Upward Continuation Operation in Gravity Data Processing. Pure and Applied Geophysics, 180(11), 3787–3811. https://doi.org/10.1007/s00024-023-03348-1

Eldosouky, A. M., Abdelkareem, M., & Elkhateeb, S. O. (2017). Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt. Journal of African Earth Sciences, 130, 28–37. https://doi.org/10.1016/j.jafrearsci.2017.03.006

Eldosouky, A. M., Elkhateeb, S. O., Mahdy, A. M., Saad, A. A., Fnais, M. S., Abdelrahman, K., & Andráš, P. (2022). Structural analysis and basement topography of Gabal Shilman area, South Eastern Desert of Egypt, using aeromagnetic data. Journal of King Saud University - Science, 34(2), 101764. https://doi.org/10.1016/j.jksus.2021.101764

Gabtni, H., & Jallouli, C. (2017). Regional-residual separation of potential field: An example from Tunisia. Journal of Applied Geophysics, 137, 8–24. https://doi.org/10.1016/j.jappgeo.2016.12.011

Ibraheem, I. M., Tezkan, B., Ghazala, H., & Othman, A. A. (2023). A New Edge Enhancement Filter for the Interpretation of Magnetic Field Data. Pure and Applied Geophysics, 180(6), 2223–2240. https://doi.org/10.1007/s00024-023-03249-3

Keating, P., & Sailhac, P. (2004). Use of the analytic signal to identify magnetic anomalies due to kimberlite pipes. GEOPHYSICS, 69(1), 180–190. https://doi.org/10.1190/1.1649386

Lawal, T., Abdulrazak. A, J., Dahir M, O., Oluwakorede, F., & John Sunday, A. (2024). Delineation of structural features and hydrothermal alteration zones using integrated geophysical data of part of North-central Nigeria. In Proceedings of the Nigerian Society of Physical Sciences, 83. https://doi.org/10.61298/pnspsc.2024.1.83

Li, X. (2006). Understanding 3D analytic signal amplitude. GEOPHYSICS, 71(2), L13–L16. https://doi.org/10.1190/1.2184367

Megwara, J. U., & Udensi, E. E. (2014). Structural Analysis Using Aeromagnetic Data: Case Study of Parts of Southern Bida Basin, Nigeria and the Surrounding Basement Rocks. Earth Science Research, 3(2), p27. https://doi.org/10.5539/esr.v3n2p27

Miller, H. G., & Singh, V. (1994). Potential field tilt—A new concept for location of potential field sources. Journal of Applied Geophysics, 32(2–3), 213–217. https://doi.org/10.1016/0926-9851(94)90022-1

Mohamed, A., & Al Deep, M. (2021). Depth to the bottom of the magnetic layer, crustal thickness, and heat flow in Africa: Inferences from gravity and magnetic data. Journal of African Earth Sciences, 179, 104204. https://doi.org/10.1016/j.jafrearsci.2021.104204

Nabighian, M. N. (1972). The analytic signal of two?dimensional magnetic bodies with polygonal cross?section: its properties and use for automated anomaly interpretation. GEOPHYSICS, 37(3), 507–517. https://doi.org/10.1190/1.1440276

Narayan, S., Sahoo, S. D., Pal, S. K., Kumar, U., Pathak, V. K., Majumdar, T. J., & Chouhan, A. (2017). Delineation of structural features over a part of the Bay of Bengal using total and balanced horizontal derivative techniques. Geocarto International, 32(4), 351–366. https://doi.org/10.1080/10106049.2016.1140823

Ndikum, E. N., & Tabod, C. T. (2024). Applying Source Parameter Imaging (SPI) to Aeromagnetic Data to Estimate Depth to Magnetic Sources in the Mamfe Sedimentary Basin. International Journal of Geosciences, 15(01), 1–11. https://doi.org/10.4236/ijg.2024.151001

Njeudjang, K., Yandjimain, J., Bouba, A., Djousse Kanouo, B. M., Teikeu, W. A., Djongyang, N., & Ndougsa-Mbarga, T. (2022). Subsurface Tectonic Inferences of the Adamawa Region of Cameroon from EMAG2 Magnetic Data. International Journal of Geophysics, 2022, 1–13. https://doi.org/10.1155/2022/8451725

Obaje, N. G. (2009). The Dahomey Basin. In N. G. Obaje, Geology and Mineral Resources of Nigeria (Vol. 120, pp. 103–108). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-92685-6_9

Olade, M. A. (2019). Solid Mineral Deposits and Mining in Nigeria: -A Sector in Transitional Change. Preprint. https://doi.org/10.13140/RG.2.2.14157.28648

Olatunji, S., & Abubakar, H. O. (2024). Source investigation of Ikanje artesian spring in north-central Nigeria, using VLF-EM and VES geophysical techniques. Geosciences Journal, 28(1), 125–136. https://doi.org/10.1007/s12303-023-0035-4

Olawuyi, A. K., & Bawallah, M. A. (2022). Integrated geophysical methods and techniques for studying the perennial springs in Ikanje- Share, Kwara State, Nigeria. Nigerian Journal of Basic and Applied Sciences, 30(1), 68–76. https://doi.org/10.4314/njbas.v30i1.10

Oruç, B., & Selim, H. H. (2011). Interpretation of magnetic data in the Sinop area of Mid Black Sea, Turkey, using tilt derivative, Euler deconvolution, and discrete wavelet transform. Journal of Applied Geophysics, 74(4), 194–204. https://doi.org/10.1016/j.jappgeo.2011.05.007

Pal, S. K., & Majumdar, T. J. (2015). Geological appraisal over the Singhbhum-Orissa Craton, India using GOCE, EIGEN6-C2 and in situ gravity data. International Journal of Applied Earth Observation and Geoinformation, 35, 96–119. https://doi.org/10.1016/j.jag.2014.06.007

Pham, L. T., & Oliveira, S. P. (2023). Edge Enhancement of Magnetic Sources Using the Tilt Angle and Derivatives of Directional Analytic Signals. Pure and Applied Geophysics, 180(12), 4175–4189. https://doi.org/10.1007/s00024-023-03375-y

Robb, L. J. (2020). Introduction to ore-forming processes (Second edition). Wiley-Blackwell.

Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. GEOPHYSICS, 57(1), 116–125. https://doi.org/10.1190/1.1443174

Rushmer, T. (1991). Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology, 107(1), 41–59. https://doi.org/10.1007/BF00311184

Saleh, A., Abdelmoneim, M., Abdelrady, M., & Al Deep, M. (2018). Subsurface structural features of the basement complex and mineralization zone investigation in the Barramiya area, Eastern Desert of Egypt, using magnetic and gravity data analysis. Arabian Journal of Geosciences, 11(21), 676. https://doi.org/10.1007/s12517-018-3983-7

Salem, A., Williams, S., Fairhead, D., Smith, R., & Ravat, D. (2008). Interpretation of magnetic data using tilt-angle derivatives. GEOPHYSICS, 73(1), L1–L10. https://doi.org/10.1190/1.2799992

Sanusi, S. O., & Amigun, J. O. (2020). Structural and hydrothermal alteration mapping related to orogenic gold mineralization in part of Kushaka schist belt, North-central Nigeria, using airborne magnetic and gamma-ray spectrometry data. SN Applied Sciences, 2(9), 1591. https://doi.org/10.1007/s42452-020-03435-1

Ter Maat, G. W., McEnroe, S. A., Church, N. S., & Larsen, R. B. (2019). Magnetic Mineralogy and Petrophysical Properties of Ultramafic Rocks: Consequences for Crustal Magnetism. Geochemistry, Geophysics, Geosystems, 20(4), 1794–1817. https://doi.org/10.1029/2018GC008132

Thanh Pham, L., Eldosouky, A. M., Melouah, O., Abdelrahman, K., Alzahrani, H., Oliveira, S. P., & Andráš, P. (2021). Mapping subsurface structural lineaments using the edge filters of gravity data. Journal of King Saud University - Science, 33(8), 101594. https://doi.org/10.1016/j.jksus.2021.101594

Thurston, J. B., & Smith, R. S. (1997). Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method. GEOPHYSICS, 62(3), 807–813. https://doi.org/10.1190/1.1444190

Tijani, M. N. (2023). Geology of Nigeria. In A. Faniran, L. K. Jeje, O. A. Fashae, & A. O. Olusola (Eds.), Landscapes and Landforms of Nigeria (pp. 3–32). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-17972-3_1

Verduzco, B., Fairhead, J. D., Green, C. M., & MacKenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116–119. https://doi.org/10.1190/1.1651454

Yang, T., Chou, Y., Ferré, E. C., Dekkers, M. J., Chen, J., Yeh, E., & Tanikawa, W. (2020). Faulting Processes Unveiled by Magnetic Properties of Fault Rocks. Reviews of Geophysics, 58(4), e2019RG000690. https://doi.org/10.1029/2019RG000690

Zuo, B., Hu, X., Cai, Y., & Liu, S. (2019). 3D magnetic amplitude inversion in the presence of self-demagnetization and remanent magnetization. GEOPHYSICS, 84(5), J69–J82. https://doi.org/10.1190/geo2018-0514.1

Downloads

Published

2024-12-27

How to Cite

Adebisi, W. A., Folorunso, I. O., Abubakar, H. O., Olatunji, S., & Olaojo, M. O. (2024). Delineating Structural Features Related to Hydrothermal Alterations for Possible Mineralization in Share Area, Kwara State Nigeria Using Aeromagnetic Data. Indonesian Journal of Earth Sciences, 4(2), A1265. https://doi.org/10.52562/injoes.2024.1265