Application of GIS-Based Frequency Ratio Model to Geoelectric Parameters for Groundwater Potential Zonation in a Basement Complex Terrain

Authors

  • Adeolu Olajide Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria
  • Ayokunle Adewale Akinlalu Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria
  • Gregory Oluwole Omosuyi Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria

DOI:

https://doi.org/10.52562/injoes.v2i1.295

Keywords:

Frequency Ratio (FR), Geo-electric Parameters, Groundwater Potential Zonation, Area Under the Curve (AUC), Spatial Attribute Comparative Scheme (SACS)

Abstract

This study applied a geographic information system (GIS) based frequency ratio (FR) model for groundwater potential assessment in a crystalline basement complex terrain, southwestern, Nigeria. The aim of the study is to investigate the proficiency of the model when applied to geo-electric parameters. Four geo-electrically derived groundwater potential conditioning factors (GPCFs) were used, namely; Aquifer resistivity (AQR), Aquifer thickness (AQT), Coefficient of anisotropy (COA), and Bedrock relief (BED). The well location inventories were partitioned randomly into 70% (45 wells) for model training and 30% (19 wells) for model testing. The frequency ratio model algorithm was used to synthesize the GPCFs to produce the groundwater potential index (GWPI). The estimated GWPI was processed in the GIS environment to produce a groundwater potential zonation map which enabled the demarcation of the study area into five potential zones. The produced FR-based model map was validated through the application of the area under the curve (AUC) approach and spatial attribute comparative scheme (SACS). The AUC validation approach for the FR model showed a 64% success rate and 61% for prediction rate. The quantitative SACS result, based on the well data analysis, established 63% agreement with the insitu well water column thickness map. Similarly, the result of the qualitative SACS established a 71% Agreement. The SACS analysis shows that the FR-based model is a good alternative for prediction of groundwater potential zones even when applied to GWCFs that are geo-electrically derived. Thus, the produced map could form part of decision-making mechanisms for groundwater exploitation and management in the area.

Downloads

Download data is not yet available.

References

Adeleke, B. O., & Cheng, L. G. (1978). Certificate physical and human Geography, West Africa Ed. Oxford University Press Ibadan, Nigeria.

Ademeso, O. A. (2009). Deformation Traits in the Charnockitic Rocks of Akure Area, Southwestern Nigeria. Asian Journal of Earth Sciences, 2(4), 113-120. http://doi.org/10.3923/ajes.2009.113.120

Adeyemo, I. A., Omosuyi, G. O., Ojo, B. T., & Adekunle, A. (2017). Groundwater potential evaluation in a typical Basement Complex environment using GRT index—a case study of Ipinsa-Okeodu area, near Akure, Nigeria. Journal of Geoscience and Environment Protection, 5(03), 240. https://doi.org/10.4236/gep.2017.53017

Adiat, K. A. N., Nawawi, M. N. M. & Abdullah, K. (2012). Integration of Geographic Information System and 2D Imaging to Investigate the Effects of Subsurface Condictions on Flood Occurrence. Modern Applied Science, 6(3), 11-21. https://doi.org/10.5539/mas.v6n3p11

Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2013). Application of Multi-criteria Decision Analysis to Geoelectric and Geologic Parameters for Spatial Prediction of Groundwater Resources and Aquifer Evaluation. Pure Appl Geophysics, 2(3), 453-471. https://doi.org/10.1007/s00024-012-0501-9

Akinlalu, A. A., Adegbuyiro, A., Adiat, K. A. N., Akeredolu, B. E., & Lateef, W. Y. (2017). Application of Multi-Criteria Decision Analysis in Prediction of Groundwater Resources, A Case study of Oke-Ana, Ilesa Area Southwestern Nigeria. NGRIG Journal of Astronomy and Geophysics, 6(1) 184–200. https://doi.org/10.1016/j.nrjag.2017.03.001

Balamurugan, G., Seshan, K. & Bera, S. (2017). Frequency ratio model for groundwater mapping and its sustainable management in cold desert, India. Journal of King Saud University - Science. 29(3), 333-347. https://doi.org/10.1016/j.jksus.2016.08.003

Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS?based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30(1), 231-250. https://doi.org/10.1080/01431160802270131

Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111(1-2), 79-87. https://doi.org/10.1016/j.geomorph.2008.03.015

Hong, H., Xu, C., & Bui, D. T. (2015). Landslide susceptibility assessment at the Xiushui area (China) using frequency ratio model. Procedia Earth and Planetary Science, 15, 513-517. https://doi.org/10.1016/j.proeps.2015.08.065

Jenks, G. F. (1967). The data model concept in statistical mapping. International yearbook of cartography, 7, 186-190.

Keller, G.V. and Frischknecht, F.C. (1966) Electrical Methods in Geophysical Prospecting. Pergamon Press, Oxford.

Lawal, D. U., Matori, A. N., Hashim, A. M., Wan Yusof, K., & Chandio, I. A. (2012). Detecting flood susceptible areas using GIS-based analytic hierarchy process. International Conference on Future Environment and Energy in Singapore.

Lee, S., Kim, Y. S., & Oh, H. J. (2012). Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. Journal of Environmental Management, 96(1), 91-105. https://doi.org/10.1016/j.jenvman.2011.09.016

Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33-41. https://doi.org/10.1007/s10346-006-0047-y

Maillet, R. (1947). The fundamental equations of electrical prospecting. Geophysics, 12(4), 529-556. https://doi.org/10.1190/1.1437342

Mogaji, K. A. (2016). Combining geophysical techniques and multi-criteria GIS-based application modeling approach for groundwater potential assessment in southwestern Nigeria. Environmental Earth Sciences, 75(16), 1-20. https://doi.org/10.1007/s12665-016-5897-6

Mogaji, K. A. & Lim H. S. (2017) Groundwater Potential Mapping Using Geoelectrical-based Aquifer Hydraulic Parameters; A GIS-based Multi-Criteria Decision Analysis Modelling Approach, Terr. Atmos. Ocean. Sci, 28(3), 479-500. https://doi.org/10.3319/TAO.2016.11.01.02

Mogaji, K. A., & Omobude, O. B. (2017). Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria–A GIS-based GODT approach. NRIAG Journal of Astronomy and Geophysics, 6(2), 434-451. https://doi.org/10.1016/j.nrjag.2017.07.001

Mogaji, K. A., & Lim, H. S. (2018). Application of Dempster-Shafer theory of evidence model to geoelectric and hydraulic parameters for groundwater potential zonation. NRIAG Journal of Astronomy and Geophysics, 7(1), 134-148. https://doi.org/10.1016/j.nrjag.2017.12.008

Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221-236. https://doi.org/10.1016/j.jseaes.2012.10.005

Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics, 8(1), 171-186. https://doi.org/10.1007/s12145-014-0145-7

Nampak, H., Pradhan, B., & Abd Manap, M. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283-300. https://doi.org/10.1016/j.jhydrol.2014.02.053

Nicu, I. C. (2017). Frequency ratio and GIS-based evaluation of landslide susceptibility applied to cultural heritage assessment. Journal of Cultural Heritage, 28, 172-176. https://doi.org/10.1016/j.culher.2017.06.002

Oh, H. J., Kim, Y. S., Choi, J. K., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399(3-4), 158-172. https://doi.org/10.1016/j.jhydrol.2010.12.027

Olorunfemi, M. O., & Fasuyi, S. A. (1993). Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State). Journal of African Earth Sciences (and the Middle East), 16(3), 309-317. https://doi.org/10.1016/0899-5362(93)90051-Q

Olorunfemi, M.O. & Okhue, E.T. (1992). Hydrogeology and geologic Significance of a geoelectric survey at Ile-Ife. Nigerian of Mining Geology, 28(2), 221-229.

Olajide, A., Bayode, S., Fagbemigun, T., Oyebamiji, A., Amosun, J., & Owasanoye, A. (2020). Evaluation of Aquifer Protective Capacity and Groundwater Potential in Part of Iju, Akure-North, Ondo State, Nigeria. Journal of the Nigerian Society of Physical Sciences, 2(3), 197-204. https://doi.org/10.46481/jnsps.2020.32

Omosuyi, G.O.& Enikanselu, P. A. (1999). Direct Current resistivity sounding for groundwater potential in Basement Complex of North-central Nigeria. Journal of Science, Engineering and tech, 2(1). 331-334.

Ozdemir, A. (2011). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of hydrology, 411(3-4), 290-308. https://doi.org/10.1016/j.jhydrol.2011.10.010

Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197. https://doi.org/10.1016/j.jseaes.2012.12.014

Rahaman, M. A. (1976). A Review of the Basement Geology of Sourthwestern Nigeria. Elizabethan publishing Co, 41-48.

Rahmati. O., Pourghasemi R. H. & Melesse A. M. (2016). Application of GIS-based data driven random forest and maximum entropy for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360-372. https://doi.org/10.1016/j.catena.2015.10.010

Rubin, Y. & Hubbard, S. (2005). Hydrogeophysics, Springer, Dordrecht, the Netherland, 523pp.

Shailaja, G., Laxminarayana, M., Patji, J.D., Erran, V.C., Suryanwanshi, R.A. & Gupta, G. (2016). Efficacy of anisotropic properties in groundwater exploration from geoelectric sounding over trap covered terrain. J.Ind. Geophys. Union, 20(5), 453-461.

Todd, D. K. (2004). Groundwater Hydrology. John Wiley & Sons, New York.

Vander-Velpen, B. P. A. (1998). WinRESIST Version 1.0 Resistivity Depth Sounding Interpretation Software. M. Sc Research Project, ITC, Delft, Netherland.

Ying, X., Zeng, G. M., Chen, G. Q., Tang, L., Wang, K. L., & Huang, D. Y. (2007). Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China. Ecological modelling, 209(2-4), 97-109. https://doi.org/10.1016/j.ecolmodel.2007.06.007

Downloads

Published

2022-06-27

How to Cite

Olajide, A., Akinlalu, A. A., & Omosuyi, G. O. (2022). Application of GIS-Based Frequency Ratio Model to Geoelectric Parameters for Groundwater Potential Zonation in a Basement Complex Terrain. Indonesian Journal of Earth Sciences, 2(1), 16-32. https://doi.org/10.52562/injoes.v2i1.295

Issue

Section

Articles