A New Method for Selecting the Phase and Group Velocity Dispersion Curves of Rayleigh and Love Surface Waves: Real Data Case of Central Anatolia, Turkey (Türkiye)

Authors

  • Özcan Çakir Department of Geophysics, Süleyman Demirel University, Isparta, Türkiye
  • Yusuf Arif Kutlu Department of Geophysics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye

DOI:

https://doi.org/10.52562/injoes.2023.795

Keywords:

Central Anatolia, Crust, Inversion, Surface Wave, Tomography

Abstract

We propose a new method to select the dispersion curve of Rayleigh and Love surface waves obtained from local and regional earthquakes. This method is efficient for the crustal tomography studies and the Central Anatolia is chosen to test it. The single-station method utilizing both seismograms and accelerograms is used for the group velocities from local earthquakes while the two-station approach utilizing the cross correlograms is employed for the group and phase velocities using both local and regional earthquakes. The proposed method is made of two stages. The first stage based on the multiple filter technique – MFT is designed for an automatic selection of the desired dispersion curve.  In case of the single-station approach, the MFT diagrams are computed for both Rayleigh and Love seismograms or accelerograms. An algorithm based on several selection criteria is employed to extract the corresponding group velocity dispersion curve from the MFT diagram. In case of the two-station method, the MFT diagrams are computed for both Rayleigh and Love cross correlograms. The latter algorithm developed for the MFT diagram is again applied to the cross correlogram to select the respective two-station group velocity dispersion curve.  To select the corresponding two-station phase velocity dispersion curve, another algorithm is developed where the joint inversion of phase and group velocities is employed. The RMS value quantifying the misfit between the selected and inverted dispersion curves is found minimum when the selected phase velocity curve is compatible with the group velocity curve extracted via the MFT. The selection procedures defined up until this point constitute the first stage. In the second stage, phase and group velocity gathering around base pathways is performed. This way it is possible to compute the averages and standard deviations for the observed pathways traversing the similar geology. The outliers determined by using the averages and standard deviations are eliminated from the data set and this elimination is performed for phase and group velocities, separately.

Downloads

Download data is not yet available.

References

Abgarmi, B., Delph, J. R., Ozacar, A. A., Beck, S. L., Zandt, G., Sandvol, E., Turkelli, N., & Biryol, C.B. (2017). Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions: New insights on isostatic compensation and slab dynamics. Geosphere, 13(6), 1774-1787. https://doi.org/10.1130/GES01509.1

Acevedo, J., Fernández-Viejo, G., Llana-Fúnez, S., López-Fernández, C., Olona, J., & Pérez-Millán, D. (2022). Radial anisotropy and S-wave velocity depict the internal to external zone transition within the Variscan orogen (NW Iberia). Solid Earth, 13(3), 659–679. https://doi.org/10.5194/se-13-659-2022

AFAD. (2023). The Turkish Disaster and Emergency Management Presidency. https://deprem.afad.gov.tr/home-page. Last visited 24.07.2023

Agius, M. R., & Lebedev, S. (2014). Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust. Geophysical Journal International, 199(3), 1395-1415. https://doi.org/10.1093/gji/ggu326

Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America, 81(6), 2504–2510. https://doi.org/10.1785/BSSA0810062504

Anderson, D. L. (1989). Theory of the Earth. Boston, MA: Blackwell Scientific Publications.

Arcasoy, A. (2001). A new method for detecting the alignments from point-like features: an application to the volcanic cones of Cappadocian Volcanic Province. PhD thesis, Middle East Technical University, Ankara.

Aydar, E., Diker, C., Ulusoy, I., & ?en, E. (2021). Volcanic unrest possibilities in response to recent Obruk seismic swarm on and around Hasanda? stratovolcano (Central Anatolia, Turkey). Comptes Rendus. Géoscience, 353, 1-18. https://doi.org/10.5802/crgeos.46

Aydin, F. (2008). Contrasting complexities in the evolution of calc-alkaline and alkaline melts of the Nigde volcanic rocks, Turkey: textural, mineral chemical and geochemical evidence. European Journal of Mineralogy, 20(1), 101-118. https://doi.org/10.1127/0935-1221/2008/0020-1784

Barka, A. A., & Kadinsky-Cade, K. (1988). Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7(1), 663- 684. https://doi.org/10.1029/TC007i003p00663

Barmin, M., Ritzwoller, M., Levshin, A. (2001). A fast and reliable method for surface wave tomography. Pure and Applied Geophysics, 158, 1351-1375. https://doi.org/10.1007/PL00001225

Bartol, J., & Govers, R. (2014). A single cause for uplift of the Central and Eastern Anatolian plateau? Tectonophysics, 637, 116-136. https://doi.org/10.1016/j.tecto.2014.10.002

Berteussen, K. A. (1977). Moho depth determinations based on spectral analysis of NORSAR long period P waves. Physics of the Earth and Planetary Interiors, 15(1), 13–27. https://doi.org/10.1016/0031-9201(77)90006-1

Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodinamica Acta, 14(1-3), 3–30. https://doi.org/10.1016/S0985-3111(01)01066-X

Boztu?, D., Jonckheere, R. C., Heizler, M., Ratschbacher, L., Harlavan, Y., & Tichomirova, M. (2009). Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics, 473(1-2), 223-233. https://doi.org/10.1016/j.tecto.2008.05.035

Boztu?, D., Temiz, H., Jonckheere, R., & Ratschbacher, L. (2008). Punctuated exhumation and Foreland Basin formation and infilling in (circum)-Central Anatolia (Turkey) associated with the neo-tethyan closure. Turkish Journal of Earth Sciences, 17(4), 673-684.

Brocher, T. (2005). Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust. Bulletin of the Seismological Society of America, 95(6), 2081-2092. https://doi.org/10.1785/0120050077

Cai, H., Xiong, B., & Zhu, Y. (2018). 3D modeling and inversion of gravity data in exploration scale. In Zouaghi, T. (Ed.), Gravity - Geoscience Applications, Industrial Technology and Quantum Aspect. InTech (pp 401-406. https://doi.org/10.5772/intechopen.70961

Çak?r, Ö. (2006). The multilevel fast multipole method for forward modelling the multiply scattered seismic surface waves. Geophysical Journal International, 167(2), 663–678. https://doi.org/10.1111/j.1365-246X.2006.02928.x

Çak?r, Ö. (2009). Forward modelling the multiply scattered 2.5-D teleseismic P waves accelerated by the multilevel fast multipole method. Geophysical Journal International, 176(2), 505–517. https://doi.org/10.1111/j.1365-246X.2008.03960.x

Çak?r, Ö. (2018). Seismic crust structure beneath the Aegean region in southwest Turkey from radial anisotropic inversion of Rayleigh and Love surface waves. Acta Geophysica, 66, 1303–1340. https://doi.org/10.1007/s11600-018-0223-1

Çak?r, Ö. (2019). Love and Rayleigh waves inverted for vertical transverse isotropic crust structure beneath the Biga Peninsula and the surrounding area in NW Turkey. Geophysical Journal International, 216(3), 2081–2105. https://doi.org/10.1093/gji/ggy538

Çak?r, Ö. (2021). Transverse Isotropic Crust Structure Beneath the Northwest and Central North Anatolia Revealed by Seismic Surface Waves Propagation. Malaysian Journal of Geosciences, 5(2), 41–50. https://doi.org/10.26480/mjg.02.2021.41.50

Çak?r, Ö., & Erduran, M. (2001). Effect of earth structure and source time function on inversion of single station regional surface waves for rupture mechanism and focal depth. Journal of the Balkan Geophysical Society, 4(4), 69-90.

Çak?r, Ö., & Erduran, M. (2003). Determination of crustal structure from joint inversion of receiver function and surface wave information (in Turkish). Yerbilimleri, 27, 29–46.

Çak?r, Ö., Erduran, M., & Livao?lu, S. (2000). The effect of the initial earthquake phase shift on the inversion of regional surface wave recordings for the estimation of crustal structure. Journal of the Balkan Geophysical Society, 3(2), 20-36.

Chen, H., Li, Z., Luo, Z., Ojo, A.O., Xie, J., Bao, F., Wang, L., & Tu, G. (2021). Crust and upper mantle structure of the South China Sea and adjacent areas from the joint inversion of ambient noise and earthquake surface wave dispersions. Geochemistry Geophysics Geosystems, 22(3), e2020GC009356. https://doi.org/10.1029/2020GC009356

Chen, H., Ni, S., Chu, R., Chong, J., Liu, Z., & Zhu, L. (2018). Influence of the off-great-circle propagation of Rayleigh waves on event-based surface wave tomography in Northeast China. Geophysical Journal International, 214(2), 1105-1124. https://doi.org/10.1093/gji/ggy185

Dal Moro, G., & Ferigo, F. (2011). Joint analysis of Rayleigh and Love wave dispersion for near-surface studies: issues, criteria and improvements. Journal of Applied Geophysics, 75(3), 573-589. https://doi.org/10.1016/j.jappgeo.2011.09.008

Demirs?kan, ?. H., ?ahin, ?., & Öksüm, Ö. (2019). Determination of seismic P and S wave velocity structure of crust in central Anatolia, Pamukkale University. Journal of Engineering Sciences, 25(6), 775-784 (in Turkish). https://doi.org/10.5505/pajes.2018.45548

Dewey, J. F., & ?engör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84–92, https://doi.org/10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2

Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. H. W., & Knott, S. D. (1989). Kinematics of the western Mediterranean. In Coward M. P., Dietrich, D., & Park, R. G. (Eds.), Alpine Tectonics, Geological Society Special Publication no. 45. Geological Society, London (pp. 265-283).

Dilek, Y., & Altunkaynak, ?. (2007). Cenozoic crustal evolution and mantle dynamics of post collisional magmatism in Western Anatolia. International Geology Review, 49(5), 431-453. https://doi.org/10.2747/0020-6814.49.5.431

Dilek, Y., Altunkaynak, ?., & Öner, Z. (2009). Syn-extensional granitoids in the Menderes core complex and the late Cenozoic extensional tectonics of the Aegean province. In Ring, U., & Wernicke, B. (Eds.), Extending a continent: architecture, Rheology and Heat Budget. Geological Society, London, Special Publications, 197-223. https://doi.org/10.1144/SP321.10

Dirik, K., & Goncuoglu, M. C. (1996). Neotectonic characteristics of Central Anatolia. International Geology Review, 38(9), 807-817. https://doi.org/10.1080/00206819709465363

Duman, T. Y., Çan, T., Emre, Ö., Kadirio?lu, F. T., Ba?ar?r-Ba?türk, N., K?l?ç, T., Arslan, S., Özalp, S., Kartal, R. F., Kalafat, D., Karakaya, F., Ero?lu-Azak, T., Özel, N.M., Ergintav, S., Akkar, S., Alt?nok, Y., Tekin, S., Cingöz, A., & Kurt, A. I. (2018). Seismotectonics database of Turkey. Bulletin of Earthquake Engineering, 16, 3277-3316. https://doi.org/10.1007/s10518-016-9965-9

Erduran, M., Oreshin, S., Vinnik, L., Çak?r, Ö., & Makeyeva, L. (2022). Mantle lithosphere, asthenosphere and transition zone beneath Eastern Anatolia. Journal of Seismology, 26, 265–281. https://doi.org/10.1007/s10950-022-10074-z

Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P., Capitanio, F. A., Funiciello, F., Horvath, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F., & Serpelloni, E. (2014). Mantle dynamics in the Mediterranean. Reviews of Geophysics, 52(3), 283–332, https://doi.org/10.1002/2013RG000444

Fang, H., Zhang, H., Yao, H., Allam, D., Zigone, D., Ben-Zion, Y., Thurber, C., & van der Hilst, R. D. (2016). A new three-dimensional joint inversion algorithm of body-wave and surface-wave data and its application to the Southern California Plate Boundary Region. Journal of Geophysical Research, 121(5), 3557-3569. https://doi.org/10.1002/2015JB012702

Gallardo, L. A., & Meju, M. A. (2011). Structure-coupled multiphysics imaging in geophysical sciences. Reviews of Geophysics, 49(1), RG1003. https://doi.org/10.1029/2010RG000330

Güçtekin, A., & Köprüba?i, N. (2009). Geochemical characteristics of mafic and intermediate volcanic rocks from the Hasanda? and Erciyes volcanoes (Central Anatolia, Turkey). Turkish Journal of Earth Sciences, 18(1), 1-27. https://doi.org/10.3906/yer-0806-2

Herrmann, R. B. (2017). Computer Programs in Seismology. Open files. http://www.eas.slu.edu/People/RBHerrmann/CPS330.html. (Accessed March 2017)

Higgins, M., Schoenbohm, L. M., Brocard, G., Kaymakci, N., Gosse, J. C., & Cosca, M.A. (2015). New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ). Tectonics, 34(10), 2118–2141. https://doi.org/10.1002/2015TC003864

Julià, J., Ammon, C. J., Herrmann, R. B., & Correig, A. M. (2000). Joint inversion of receiver function and surface wave dispersion observations. Geophysical Journal International, 143(1), 99–112. https://doi.org/10.1046/j.1365-246x.2000.00217.x

Karao?lu, Ö., Selçuk, A. S., & Gudmundsson, A. (2017). Tectonic controls on the Karl?ova triple junction (Turkey): implications for tectonic inversion and the initiation of volcanism. Tectonophysics, 694, 368-384. https://doi.org/10.1016/j.tecto.2016.11.018

Kästle, E. D., El-Sharkawy, A., Boschi, L., Meier, T., Rosenberg, C., Bellahsen, N., Cristiano, L., & Weidle, C. (2018). Surface wave tomography of the Alps using ambient-noise and earthquake phase velocity measurements. Journal of Geophysical Research, 123(2), 1770-1792. https://doi.org/10.1002/2017JB014698

Keller, J. (1974). Quaternary maar volcanism near Karapinar in Central Anatolia. Bulletin Volcanologique, 36, 378–396. https://doi.org/10.1007/BF02599413

Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

Koçyi?it, A., & Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics, 284(3-4), 317-336. https://doi.org/10.1016/S0040-1951(97)00176-5

KOERI. (2023). Kandilli Observatory and Earthquake Research Institute. http://www.koeri.boun.edu.tr/new/. Last visited 24.07.2023

Korkmaz, G. G., Kurt, H., Asan, K., & Leybourne, M. (2022). Ar-Ar Geochronology and Sr-Nd-Pb-O Isotopic Systematics of the Post-collisional Volcanic Rocks from the Karap?nar-Karacada? Area (Central Anatolia, Turkey): An Alternative Model for Orogenic Geochemical Signature in Sodic Alkali Basalts. Journal of Geosciences, 67(1), 53-69. https://doi.org/10.3190/jgeosci.343

Krystopowicz, N. J., Schoenbohm, L. M., Rimando, J., Brocard, G., & Rojay, B. (2020). Tectonic geomorphology and Plio-Quaternary structural evolution of the Tuzgölü fault zone, Turkey: Implications for deformation in the interior of the Central Anatolian Plateau. Geosphere, 16(5), 1107-1124. https://doi.org/10.1130/GES02175.1

Li, L., Li, A., Murphy, M. A., & Fu, Y. V. (2016). Radial anisotropy beneath northeast Tibet, implications for lithosphere deformation at a restraining bend in the Kunlun fault and its vicinity. Geochemistry, Geophysics, Geosystems, 17(9), 3674-3690. https://doi.org/10.1002/2016GC006366

Lines, L. R., & Treitel, S. (1984). A review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting, 32(2), 159-186. https://doi.org/10.1111/j.1365-2478.1984.tb00726.x

Magrini, F., Lauro, S., Kästle, E., & Boschi, L. (2022). Surface-wave tomography using SeisLib: a Python package for multi-scale seismic imaging. Geophysical Journal International, 231(2), 1011-1030. https://doi.org/10.1093/gji/ggac236

Movaghari, R., JavanDoloei, G., Yang, Y., Tatar, M., & Sadidkhouy, A. (2021). Crustal radial anisotropy of the Iran Plateau inferred from ambient noise tomography. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020236. https://doi.org/10.1029/2020JB020236

Özsay?n, E., Çiner, A., Rojay, B., Dirik, K., Melnick, D., Fernandez-Blanco, D., Bertotti, G., Schildgen, T. F., Garcin, Y., Strecker, M. R., & Sudo, M. (2013). Plio-Quaternary extensional tectonics of the Central Anatolian Plateau: a case study from the Tuzgölü Basin, Turkey. Turkish Journal of Earth Sciences, 22(5), 691–714. https://doi.org/10.3906/yer-1210-5

Rawlinson, N. (2005). FMST: Fast marching surface tomography package. Research School of Earth Science, Australian National University, Canberra.

Rawlinson, N., & Sambridge, M. (2003). Seismic traveltime tomography of the crust and lithosphere. Advances in Geophysics, 46, 81–198. https://doi.org/10.1016/S0065-2687(03)46002-0

Rawlinson, N., & Sambridge, M. (2005). The fast marching method. An effective tool for tomographic imaging and tracking multiple phases in complex layered media. Exploration Geophysics, 36(4), 341–350. https://doi.org/10.1071/EG05341

SAGE. (2023). Seismological Facility for the Advancement of Geoscience. https://ds.iris.edu/ds/. Last visited 15.08.2023

Salaün, G., Pedersen, H., Paul, A., Farra, V., Karabulut, H., Hatzfeld, D., Childs, D.M., Pequegnat, C., & the SIMBAAD. (2012). Team High-resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper mantle structure. Geophysical Journal International, 190(1), 406-420. https://doi.org/10.1111/j.1365-246X.2012.05483.x

Sarjan, A. F. N., Zulfakriza, Z., Nugraha, A. D., Rosalia, S., Wei, S., Widiyantoro, S., Cummins, P. R., Muzli, M., Sahara, D. P., Puspito, N. T., Priyono, A., & Afif, H. (2021). Delineation of upper crustal structure beneath the Island of Lombok, Indonesia, using ambient seismic noise tomography. Frontiers in Earth Science, 9, 560428. https://doi.org/10.3389/feart.2021.560428

Saygin, E., & Kennett, B. L. N. (2010). Ambient seismic noise tomography of Australian continent. Tectonophysics, 481(1-4), 116-125. https://doi.org/10.1016/j.tecto.2008.11.013

Scarponi, M., Hetényi, G., Plomerová, J., Solarino, S., Baron, L., & Petri, B. (2021). Joint Seismic and Gravity Data Inversion to Image Intra-Crustal Structures: The Ivrea Geophysical Body Along the Val Sesia Profile (Piedmont, Italy). Frontiers in Earth Science, 9, 671412. https://doi.org/10.3389/feart.2021.671412

Schildgen, T. F., Yildirim, C., Cosentino, D., & Strecker, M. R. (2014). Linking slab break-off, Hellenic trench retreat, and uplift of the central and eastern Anatolian plateaus. Earth-Science Reviews, 128, 147–168. https://doi.org/10.1016/j.earscirev.2013.11.006

?engör, A. M. C., & Y?lmaz. Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181–241. https://doi.org/10.1016/0040-1951(81)90275-4

Sethian, J. A., & Popovici, A. M. (1999). 3-D traveltime computation using the fast marching method. Geophysics, 64(2), 516-523. https://doi.org/10.1190/1.1444558

Silva, J. B. C., & Barbosa, V. C. F. (2006). Interactive gravity inversion. Geophysics, 71(1), J1–J9. https://doi.org/10.1190/1.2168010

Styron, R., & Pagani, M. (2020). The GEM Global Active Faults Database. Earthquake Spectra, 36(S1), 160–180. https://doi.org/10.1177/8755293020944182

Syracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., & Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139-149. https://doi.org/10.1016/j.epsl.2016.03.050

Syracuse, E. M., Zhang, H., & Maceira, M. (2017). Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States. Tectonophysics, 718, 105-117. https://doi.org/10.1016/j.tecto.2017.07.005

Tarantola, A. (1987). Inverse problem theory. Elsevier Science Company Inc., Amsterdam (pp 187–255).

Tohti, M., Liu, J., Xiao, W., Wang, Y., Di, Q., & Zhou, K. (2022). Full-wave-form inversion of surface waves based on instantaneous-phase coherency. Near Surface Geophysics, 20(5), 494–506. https://doi.org/10.1002/nsg.12229

Toprak, V. (1998). Vent distribution and its relation to regional tectonics, Cappadocian Volcanics, Turkey. Journal of Volcanology and Geothermal Research, 85(1-4), 55–67. https://doi.org/10.1016/S0377-0273(98)00049-3

USGS. (2023). United States Geological Survey. https://www.usgs.gov/. Last visited 24.07.2023

Uslular, G., & Gençalio?lu-Ku?cu, G. (2019). Geochemical Characteristics of Anatolian Basalts: Comment on “Neogene Uplift and Magmatism of Anatolia: Insights from Drainage Analysis and Basaltic Geochemistry” by McNab Et Al.. Geochemistry, Geophysics, Geosystems, 20(1), 530-541. https://doi.org/10.1029/2018GC007533

Uslular, G., Gençalio?lu-Ku?cu, G., & Arcasoy, A. (2015). Size-distribution of scoria cones within the E?rikuyu monogenetic field (Central Anatolia, Turkey). Journal of Volcanology and Geothermal Research, 301, 56-65. https://doi.org/10.1016/j.jvolgeores.2015.05.006

Uslular, G., Le Corvec, N., Mazzarini, F., Legrand, D., & Gençalio?lu-Ku?cu, G. (2021). Morphological and multivariate statistical analysis of quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey): Implications for the volcano-tectonic evolution. Journal of Volcanology and Geothermal Research, 416, 107280. https://doi.org/10.1016/j.jvolgeores.2021.107280

Wang, Y., & Pavlis, G. L. (2016). Generalized iterative deconvolution for receiver function estimation. Geophysical Journal International, 204(2), 1086–1099. https://doi.org/10.1093/gji/ggv503

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001

Wu, J., Liu, Y., Zhong, S., Wang, W., Cai, Y., Wang, W., & Liu, J. (2022). Lithospheric structure beneath Ordos Block and surrounding areas from joint inversion of receiver function and surface wave dispersion. Science China Earth Sciences, 65, 1399–1413. https://doi.org/10.1007/s11430-021-9895-0

Y?ld?r?m, C. (2014). Relative tectonic activity assessment of the Tuz Gölü fault zone, central Anatolia, Turkey. Tectonophysics, 630, 183-192. https://doi.org/10.1016/j.tecto.2014.05.023

Zhang, X., Zheng, Y., & Curtis, A. (2023). Surface wave dispersion inversion using an energy likelihood function. Geophysical Journal International, 232(1), 523–536. https://doi.org/10.1093/gji/ggac331

Zhou, B., Greenhalgh, S. A., & Sinadinovski, C. (1992). Iterative algorithm for the damped minimum norm, least squares and constrained problem in seismic tomography. Exploration Geophysics, 23(3), 497–505. https://doi.org/10.1071/EG992497

Zhou, Z., Wiens, D. A., Shen, W., Aster, R. C., Nyblade, A., & Wilson, T. J. (2022). Radial anisotropy and sediment thickness of West and Central Antarctica estimated from Rayleigh and Love wave velocities. Journal of Geophysical Research: Solid Earth, 127(3), e2021JB022857. https://doi.org/10.1029/2021JB022857

Zhu, R., Zhao, P., & Zhao, L. (2022). Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Science China Earth Science, 65, 1–24. https://doi.org/10.1007/s11430-021-9845-7

Downloads

Published

2023-10-04

How to Cite

Çakir, Özcan, & Kutlu, Y. A. . (2023). A New Method for Selecting the Phase and Group Velocity Dispersion Curves of Rayleigh and Love Surface Waves: Real Data Case of Central Anatolia, Turkey (Türkiye). Indonesian Journal of Earth Sciences, 3(2), A795. https://doi.org/10.52562/injoes.2023.795