Spatio-temporal Analysis of An Invasive Alien Species, Vachellia nilotica, on Rodrigues Island, Mauritius, Using Geographic Information Systems and Remote Sensing Techniques

Authors

  • Reshma Sunkur Department of Environment, Science and Social Sustainability, School of Sustainable Development and Tourism, University of Technology, Mauritius, La Tour Koenig, Pointe aux Sables, Mauritius
  • John Mauremootoo InSpiral Pathways, Bristol, United Kingdom

DOI:

https://doi.org/10.52562/injoes.2024.835

Keywords:

remote sensing, GIS, modeling, Mauritius

Abstract

Invasive alien species (IAS) constitute a large and growing environmental and socio-economic problem. Tropical islands, one of the richest habitats in the world, are especially vulnerable to invasions because of their island-specific flora and fauna. The aim of this study is thus to assess the viability of monitoring IAS distributions on small tropical islands using Geographic Information Systems (GIS) and remote sensing techniques, focusing on the invasive plant species Vachellia nilotica on the island of Rodrigues as a case study. Freely available satellite images are used to conduct the analysis with resulting classified maps having accuracy levels in the high 70s. The results reveal a significant increase in Vachellia coverage from 2013 to 2023 especially along the coasts while the simulation for 2033 indicates an inward migration from coasts to the central plateau which could have severe repercussions on the native vegetation and human activities. Given the high invasive potential of Vachellia, the present findings can support conservation actions and decision making and even support community participation in managing this IAS. In the broader context, the study demonstrates the potential of GIS and remote sensing as cost-effective tools for monitoring certain invasive plant species.

Downloads

Download data is not yet available.

References

Abbas, Z., Yang, G., Zhong, Y., & Zhao, Y. (2021). Spatiotemporal Change Analysis and Future Scenario of LULC using the CA-ANN Approach: A Case Study of the Greater Bay Area, China. Land, 10(6), 584. https://doi.org/10.3390/land10060584

Baider, C., Florens, F. V., Baret, S., Beaver, K., Matatiken, D., Strasberg, D., & Kueffer, C. (2010). Status of Plant Conservation in Oceanic Islands of the Western Indian Ocean. In Proceedings of the 4th global botanic gardens congress (Vol. 2, pp. 1-7). Dublin: National Botanic Gardens of Ireland. [pdf] Retrieved from https://www.researchgate.net/publication/252932769 [Accessed 19 March 2023]

Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Leal, C. G., Isaac V., Lees, A. C., Paar, C. L., Wilson, S. K., Young, P. J., & Graham N. A. (2018). The Future of Hyperdiverse Tropical Ecosystems. Nature, 559(7715), 517-526. https://doi.org/10.1038/s41586-018-0301-1

Bolch, E. A., Santos, M. J., Ade, C., Khanna, S., Basinger, N. T., Reader, M. O., & Hestir, E. L. (2020). Remote Detection of Invasive Alien Species. In Jeannine Cavender-Bares, John A. Gamon, & Philip A. Townsend (Eds.), Remote Sensing of Plant Biodiversity (pp. 267-307). Springer Link. https://doi.org/10.1007/978-3-030-33157-3

CABI. (2022). Acacia nilotica (Gum Arabic Tree). [Online] Available from https://www.cabidigitallibrary.org/-doi/10.1079/cabicompendium.2342 [Accessed 14 May 2023]

Carter, J. (1994). Acacia nilotica: A Tree Legume Out of Control. In Gutteridge, R., & Shelton, H., (Eds.), Forage tree legumes in tropical agriculture (pp. 338-351). Wallingford: CAB INTERNATIONAL. ISBN : 9780851988689

Cho, S. M. (2021). Classification of Warm Temperate Vegetations and GIS-based Forest Management System. International journal of advanced smart convergence, 10(1), 216-224. https://doi.org/10.7236/IJASC.2021.10.1.216

Chong, K. Y., Corlett, R. T., Nuñez, M. A., Chiu, J. H., Courchamp, F., Dawson, W., Kuebbing, S., Liebhold, A. M., Padmanaba, M., Souza, L., & Andersen, K. M. (2021). Are Terrestrial Biological Invasions Different in the Tropics?. Annual Review of Ecology, Evolution, and Systematics, 52, 291-314. https://doi.org/10.1146/annurev-ecolsys-012021-095454

CIRAD. (2019). Preliminary Study of The Conditions For The Creation Of An Energy Valorization (Bioelectricity) Sector For Woody Biomass In Two IOC Member States: Mauritius (Rodrigues) And Seychelles (La Digue). Provisional Report, Ref. COI/ENERGIE/SERV/2018/046.

CNES. (2023). SWH Data Site. [online] Available from https://regards.cnes.fr/user/swh/modules/60 [Accessed 06 June 2023]

Congalton, R. G. (1991). A Review of Assessing The Accuracy Of Classifications Of Remotely Sensed Data. Remote Sensing of Environment, 37(1), 35-46. https://doi.org/10.1016/0034-4257(91)90048-B

Couch, C. E., Peterson, J. T., & Heimowitz, P. (2023). Evaluating the Institutional and Ecological Effects of Invasive Species Prevention Policy: A Case Study from the US Fish and Wildlife Service. Management of Biological Invasions, 14(2), 269-288. https://doi.org/10.3391/mbi.2023.14.2.06

Dube, T., Maluleke, X. G., & Mutanga, O. (2022). Mapping Rangeland Ecosystems Vulnerability to Lantana camara Invasion in Semi?arid Savannahs in South Africa. African Journal of Ecology, 60(3), 658-667. https://doi.org/10.1111/aje.12951

Dvoreckiy, T. V., Trylis, V. V., & Savytskyy, O. L. (2022). Evaluation of Mass Development of The Invasive Plant Pistia Stratiotes in The Water Bodies of The Left-Bank Flood Plain of The Dnieper River Nearby Kyiv on The Basis of Satellite Data. Hydrobiological Journal, 58(4), 18-29. https://doi/10.1615/HydrobJ.v58.i4.20

Elliott-Graves, A. (2019). The Future of Predictive Ecology. Philosophical Topics, 47(1), 65-82. https://www.jstor.org/stable/26948092

Eppinga, M. B., Baudena, M., Haber, E. A., Rietkerk, M., Wassen, M. J., & Santos, M. J. (2021). Spatially Explicit Removal Strategies Increase The Efficiency of Invasive Plant Species Control. Ecological Applications, 31(3), e02257. https://doi.org/10.1002%2Feap.2257

ESRI. (2018). Is the Random Trees Classifier equal to Random Forest? [online] Available at https://community.esri.com/t5/arcgis-spatial-analyst-questions/is-the-random-trees-classifier-equal-to-random/m-p/385927?search-action-id=100522784797&search-result-uid=385927 [Accessed 24 April 2023]

Estornell, J., Martí-Gavilá, J. M., Sebastiá, M. T., & Mengual, J. (2013). Principal Component Analysis Applied to Remote Sensing. Modelling in Science Education and Learning, 6, 83-89. https://doi.org/10.4995/msel.2013.1905

Florens, F. B. V. (2008). Ecologie des forêts tropicales de l ’ île Maurice et impact des espèces introduites envahissantes (PhD thesis). Université de La Réunion, Réunion, France.

Florens, F. V. (2013). Conservation in Mauritius and Rodrigues: Challenges and Achievements from Two Ecologically Devastated Oceanic Islands. In Peter H. Raven, Navjot S. Sodhi, Luke Gibson (Eds.), Conservation Biology: Voices from the Tropics (pp. 40-50). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118679838.ch6

Gentili, R., Schaffner, U., Martinoli, A., & Citterio, S. (2021). Invasive Alien Species and Biodiversity: Impacts and Management. Biodiversity, 22(1-2), 1-3. https://doi.org/10.1080/14888386.2021.1929484

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of A Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7

Gitelson, A. A., & Merzlyak, M. N. (1994). Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of plant physiology, 143(3), 286-292. https://doi.org/10.1016/S0176-1617(11)81633-0

Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. https://scholarworks.utep.edu/cs_techrep/1209/

Gholizadeh, H., Friedman, M.S., McMillan, N. A., Hammond, W. M., Hassani, K., Sams, A.V., Charles, M. D., Garrett, D. R., Joshi, O., Hamilton, R. G., & Fuhlendorf, S. D. (2022). Mapping Invasive Alien Species in Grassland Ecosystems Using Airborne Imaging Spectroscopy and Remotely Observable Vegetation Functional Traits. Remote Sensing of Environment, 271, 112887. https://doi.org/10.1016/j.rse.2022.112887

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610-621. https://doi.org/10.1109/TSMC.1973.4309314

Hudjimartsu, S. A., Herdiyeni, Y., Prasetyo, L. B., & Siswoyo, A. (2017). Prediction of the Spread of Acacia nilotica Invasive Species Using Generalized Linear Models. Jurnal Manajemen Hutan Tropika, 23(3), 150-157.

Humeau-Heurtier, A. (2019). Texture Feature Extraction Methods: A Survey. IEEE Access, 7, 8975-9000. https://doi.org/10.1109/ACCESS.2018.2890743

Kamaraj, M., & Rangarajan, S. (2022). Predicting the Future Land Use and Land Cover Changes for Bhavani Basin, Tamil Nadu, India, using QGIS MOLUSCE Plugin. Environmental Science and Pollution Research, 29, 86337–86348. https://doi.org/10.1007/s11356-021-17904-6

Kayet, N., Pathak, K., Chakrabarty, A., Kumar, S., Chowdary, V. M., & Singh, C. P. (2022). Risk Assessment and Prediction of Forest Health for Effective Geo-environmental Planning and Monitoring of Mining Affected Forest Area in Hilltop Region. Geocarto International, 37(11), 3091-3115. https://doi.org/10.1080/10106049.2020.1849413

Koerner, L. M., Chadwick, M. A., & Tebbs, E. J. (2022). Mapping Invasive Strawberry Guava (Psidium cattleianum) in Tropical Forests of Mauritius with Sentinel-2 and Machine Learning. International Journal of Remote Sensing, 43(3), 841-872. https://doi.org/10.1080/01431161.2021.2020364

Kueffer, C., & Mauremootoo, J. (2004). Case Studies on the Status of Invasive Woody Plant Species in the Western Indian Ocean. 3 Mauritius (Islands of Mauritius and Rodrigues). Forest Health and Biosecurity Working Paper, (4-3E). Record Number : 20123338431

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310

Lasaponara, R. (2006). On the Use of Principal Component Analysis (PCA) for Evaluating Interannual Vegetation Anomalies from SPOT/VEGETATION NDVI Temporal Series. Ecological Modelling, 194(4), 429-434. https://doi.org/10.1016/j.ecolmodel.2005.10.035

Liu, H.Q., & Huete, A. (1995). A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 457-465. https://doi.org/10.1109/TGRS.1995.8746027

Lourenço, P., Teodoro, A. C., Gonçalves, J. A., Honrado, J. P., Cunha, M., & Sillero, N. (2021). Assessing the Performance of Different OBIA Software Approaches for Mapping Invasive Alien Plants along Roads with Remote Sensing Data. International Journal of Applied Earth Observation and Geoinformation, 95, 102263. https://doi.org/10.1016/j.jag.2020.102263

Masemola, C., Cho, M.A., & Ramoelo, A. (2020). Sentinel-2 Time Series Based Optimal Features and Time Window for Mapping Invasive Australian Native Acacia Species in KwaZulu Natal, South Africa. International Journal of Applied Earth Observation and Geoinformation, 93, 102207. https://doi.org/10.1016/j.jag.2020.102207

Masters, G., & Norgrove, L. (2010). Climate change and invasive alien species. UK: CABI Working Paper, 1, 30.

Mazumder, S., Saha, J., Nandi, G., Naskar, M., Gayen, J., & Datta, D. (2021). Long-term Monitoring of Cropland Transformation in Kolkata Metropolitan Area, India Using Open-source Geospatial Technologies. SN Applied Sciences, 3(98), 1-19. https://doi.org/10.1007/s42452-020-04064-4

Muhammad, R., Zhang, W., Abbas, Z., Guo, F., & Gwiazdzinski, L. (2022). Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China. Land, 11(3), 419. https://doi.org/10.3390/land11030419

Murata, N., Yoshizawa, S., & Amari, S. I. (1992). Learning Curves, Model Selection and Complexity of Neural Networks. Advances in Neural Information Processing Systems, 5. [pdf] Retrieved from https://proceedings.neurips.cc/paper/1992/hash/b2f627fff19fda463cb386442eac2b3d-Abstract.html [Accessed 19 March 2023]

NextGIS, & AAS. (2014). Landscape Change Analysis with MOLUSCE - Methods and Algorithms. GISLAB. [online] Available from https://wiki.gis-lab.info/w/Landscape_change_analysis_with_MOLUSCE_-_methods_and_algorithms [Accessed 07 June 2023]

Ouko, E., Omondi, S., Mugo, R., Wahome, A., Kasera, K., Nkurunziza, E., Kiema, J., Flores, A., Adams, E. C., Kuraru, S., & Wambua, M. (2020). Modeling Invasive Plant Species in Kenya’s Northern Rangelands. Frontiers in Environmental Science, 8, 69. https://doi.org/10.3389/fenvs.2020.00069

Park, Y. S., & Lek, S. (2016). Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. In Developments in environmental modelling (Vol. 28, pp. 123-140). Elsevier. https://doi.org/10.1016/B978-0-444-63623-2.00007-4

Paz-Kagan, T., Silver, M., Panov, N, & Karnieli, A. (2019). Multispectral Approach for Identifying Invasive Plant Species Based on Flowering Phenology Characteristics. Remote Sensing, 11(8), 953. https://doi.org/10.3390/rs11080953

Pinto-Ledezma, J. N., & Cavender-Bares, J. (2020). Using Remote Sensing for Modeling and Monitoring Species Distributions. In Jeannine Cavender-Bares, John A. Gamon, & Philip A. Townsend (Eds.), Remote Sensing of Plant Biodiversity (pp. 199-223). Springer Link. https://doi.org/10.1007/978-3-030-33157-3

Richards, J. A., & Jia, X. (2006). Multisource, Multisensor Methods. In John A. Richards & Xiuping Jia (Eds.), Remote Sensing Digital Image Analysis: An Introduction (pp. 333-357). Springer Link. https://doi.org/10.1007/3-540-29711-1_12

Sajan, B., Mishra, V. N., Kanga, S., Meraj, G., Singh, S. K., & Kumar, P. (2022). Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy, 12(11), 2772. https://doi.org/10.3390/agronomy12112772

Seebens, H., Bacher, S., Blackburn, T. M., Capinha, C., Dawson, W., Dullinger, S., Genovesi, P., Hulme, P. E., van Kleunen, M., Kühn, I., & Jeschke, J. M. (2021). Projecting the Continental Accumulation of Alien Species Through to 2050. Global Change Biology, 27(5), 970-982. https://doi.org/10.1111/gcb.15333

Silvestre, V. Q., Dillon, M. O., Zevallos, Í. T., Aguilar, M. B., Rios, A. M., Aranibar, D. R., Vera, K. D., & Tubée, D. M. (2019). Impact of Climate Changes and Land Use in the Distribution of Species of Endemic Genera of Asteraceae from Arequipa. Arnaldoa, 26(1), 71-96. https://doi.org/10.22497/arnaldoa.261.26105

Sims, D. A., & Gamon, J. A. (2002). Relationships Between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sensing of Environment, 81(2-3), 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X

Strahm, W. A. (1993). The Conservation and Restoration of the Flora of Mauritius and Rodrigues. (PhD Thesis). University of Reading, Reading.

Sutomo, S., & van Etten, E. (2017). Species Distribution Model of Invasive Alien Species Acacia nilotica for Central-Eastern Indonesia Using Biodiversity Climate Change Virtual Laboratory (BCCVL). Tropical Drylands, 1(1), 36-42. https://doi.org/10.13057/tropdrylands/t010106

Tamburello, N., & Litt, M. A. (2023). Multiple impacts of invasive species on species at risk: a case study in British Columbia, Canada. FACETS, 8, 1-13. https://doi.org/10.1139/facets-2022-0234

Timmermans, J., & Kissling, W. D. (2022). Advancing Terrestrial Biodiversity Monitoring with Satellite Remote Sensing in the Context of the Kunming-Montreal Global Biodiversity Framework. bioRxiv, 2022–04 [online]. Available from https://www.biorxiv.org/content/10.1101/2022.04.25.489356v2 [Accessed 9 August 2023].

Venette, R. C. (2015). The Challenge of Modelling and Mapping the Future Distribution and Impact of Invasive Alien Species. In Pest Risk Modelling and Mapping for Invasive Alien Species (pp. 1-17). Wallingford UK: CABI.

Venette, R. C., Kriticos, D. J., Magarey, R. D., Koch, F. H., Baker, R. H. A., Worner, S. P., Raboteaux, N. N. G., Mckenney, D. W., Dobesberger, E. J., Yemshanov, D., De Barro, P. J., Hutchison, W. D., Fowler, G., Kalaris, T. M., & Pedlar, J. (2010). Pest Risk Maps for Invasive Alien Species: A Roadmap for Improvement. Bioscience, 60(5), 349362. https://doi.org/10.1525/bio.2010.60.5.5

Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J., & Brotons, L. (2017). Integrating Species Distribution Modelling into Decision-making to Inform Conservation Actions. Biodiversity and Conservation, 26(2), 251–271. https://doi.org/10.1007/s10531-016-1243-2

Wiegleb, G. (1980). Some Applications of Principal Components Analysis in Vegetation: Ecological Research of Aquatic Communities. In Classification and Ordination: Symposium on Advances in Vegetation Science, Nijmegen, The Netherlands, May 1979 (pp. 67-73). Springer Netherlands. https://doi.org/10.1007/978-94-009-9197-2

Wolfram, S. (2002). A new kind of science (Vol. 5, p. 130). Champaign: Wolfram media.

Xu, C., Manley, B., & Ye, N. (2023). Mapping Minor Plantation Species for New Zealand’s Small-scale Forests using Sentinel-2 Satellite Data. New Zealand Journal of Forestry Science, 53(12), 1-22. https://doi.org/10.33494/nzjfs532023x314x

Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of sensors, 2017. https://doi.org/10.1155/2017/1353691

Downloads

Published

2024-02-10

How to Cite

Sunkur, R., & Mauremootoo, J. (2024). Spatio-temporal Analysis of An Invasive Alien Species, Vachellia nilotica, on Rodrigues Island, Mauritius, Using Geographic Information Systems and Remote Sensing Techniques. Indonesian Journal of Earth Sciences, 4(1), A835. https://doi.org/10.52562/injoes.2024.835