Geochemical Characteristic of the Carbonaceous Sediments of the Upper Paleozoic Kuantan Group, Malaysia


  • Amer Burgan Department of Petroleum Engineering, Faculty of Engineering, Bani Walied University, Libya



Geochemical Analysis, Carbonaceous Sediments, Upper Paleozoic, Kuantan Group Malaysia, Depositional Environments


The geochemical parameters discussed in this paper are based on the analysis of twelve outcrop carbonaceous samples, mainly black shales, using X-Ray Fluorescence (XRF) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) techniques. These samples are representative of the Charu, Sagor, and Permian formations. The aim of this study is to define and discuss their characteristics, the distribution abundance of major and minor elements, investigate the dominant mineralogical composition, and reconstruct the depositional environment for these sediments. The bulk chemical results showed that the average values of the major elements are 65.83%, 64.82%, and 71.4% SiO?; 18.27%, 22.2%, and 15.66% Al?O?; 1.53%, 0.99%, and 2.49% Fe?O?; and 4.06%, 6.25%, and 3.66% K?O for the Charu, Sagor, and Permian formations, respectively. The minor elements recorded values of 524.4 ppm, 758.8 ppm, and 446.3 ppm Ba; 366 ppm, 399.3 ppm, and 257.3 ppm Rb; 88 ppm, 67.3 ppm, and 47.3 ppm Sr; and 308 ppm, 288.8 ppm, and 327 ppm Zr for the Charu, Sagor, and Permian formations, respectively. The major oxides reflect the dominant mineralogical composition of quartz and other silicate minerals (e.g., illite, kaolinite, smectite) and a deficiency in carbonates. The high Rb/K ratio suggests a brackish marine environment or rapid deposition that prevented equilibrium between Rb and K in these shales. The high Rb/Sr ratios of 4.16, 5.89, and 5.44 for the Charu, Sagor, and Permian formations, respectively, are possibly attributed to the low Sr content due to reducing conditions prevailing during the deposition of these sediments.


Download data is not yet available.


Andrews, A. J. (1980). Saponite and celadonite in layer 2 basalts, DSDP Leg 37. Contributions to Mineralogy and Petrology, 73(4), 323-340.

Bellanca, A., Masetti, D., Neri, R., & Venezia, F. (1999). Geochemical and sedimentological evidence of productivity cycles recorded in Toarcian black shales from the Belluno Basin, Southern Alps, northern Italy. Journal of Sedimentary Research, 69(2), 466-476.

Campbell, F. A., & Lerbekmo, J. F. (1963). Mineralogic and chemical variations between Upper Cretaceous continental Belly River shales and marine Wapiabi shales in western Alberta, Canada. Sedimentology, 2(3), 215-226.

Campbell, F. A., & Williams, G. D. (1965). Chemical composition of shales of Mannville group (lower Cretaceous) of central Alberta, Canada. AAPG Bulletin, 49(1), 81-87.

Clarke, F. W. (1924). The Data of Geochemistry (fifth edition). US Government Printing Office.

Drever, J. I. (1971). Early diagenesis of clay minerals, Rio Ameca basin, Mexico. Journal of Sedimentary Research, 41(4), 982-994.

Goldschmidt, V.M. (1954). Geochemistry. Oxford University Press.

Kelepertsis, A. E., & Kontis, E. (1997). Geochemical and mineralogical characteristics of Pleistocene lignites and associated sediments of Marathousa coal field, Central Peloponnese, Greece. Chinese Journal of Geochemistry, 16, 8-19.

Kovalchuk, N. S., Makeev, B., & Svetov, S. A. (2021). Mineralogical and geochemical specificity of carbonaceous rocks from the area of Ust'-Kara astrobleme (Pay-Khoy). Vestnik of Geosciences, 11, 3-15.

Mason, B. (1966). Principles of Geochemistry. John Wiley & Sons, Inc.

Mason, B., & Moore, C.B. (1982). Principles of Geochemistry (4th ed.). New York: John Wiley & Sons, Inc.

McLennan, S. M., Taylor, S. R., & Eriksson, K. A. (1983). Geochemistry of Archean shales from the Pilbara Supergroup, western Australia. Geochimica et Cosmochimica Acta, 47(7), 1211-1222.

Metcalfe, I., Idris, M., & Tan, J. T. (1980). Stratigraphy and palaeontology of the Carboniferous sediments in the Panching area, Pahang, West Malaysia. Geological Society of Malaysia (GSM), 13, 1-26.

Nesbitt, H. W., & Markovics, G. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11), 1659-1666.

Nesbitt, H. W., & Markovics, G. (1997). Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61(8), 1653-1670.

Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523-1534.

Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2), 129-147.

Pettijohn, F.J. (1957). Sedimentary Rocks (3rd ed.). New York: Harper Bros.

Schau, M., & Henderson, J. B. (1983). Archean chemical weathering at three localities on the Canadian Shield. Precambrian Research, 20(2-4), 189-224.

Shaw, D. B., & Weaver, C. E. (1965). The mineralogical composition of shales. Journal of Sedimentary Research, 35(1), 213-222.

Shaw, D. M. (1954). Trace Elements in Pelitic Rocks: Part I: Variation During Metamorphism. Geological Society of America Bulletin, 65(12), 1151-1166.[1151:TEIPR]2.0.CO;2

Shengrong, L., & Zhenmin, G. (1996). Silicalites of hydrothermal origin in the Lower Cambrian black rock series of South China. Chinese Journal of Geochemistry, 15(2), 113-120.

Sidibe, Y. T. (1993). Lithostratigraphy, sedimentology and geochemistry of upper paleozoic Kuantan group rocks in northeast Pahang and South Terengganu, Malaysia (Doctoral dissertation, UKM, Bangi).

Turekian, K. K., & Kulp, J. L. (1956). The geochemistry of strontium. Geochimica et Cosmochimica Acta, 10(5-6), 245-296.

Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72(2), 175-192.[175:DOTEIS]2.0.CO;2

Varaksina, I. V., Timoshina, I. D., Kontorovich, A. E., & Tumashov, I. V. (2017). Lithology, organic geochemistry, and petroleum potential of the northern areas of the Kureika syneclise. Russian Geology and Geophysics, 58(3-4), 467-478.

von Hevesy, G., & Würstlin, K. (1934). Über die Häufigkeit des Strontiums [About the abundance of strontium]. Journal of Inorganic and General Chemistry, 216(3), 312-314.

Weaver, C. E., & Pollard, I. D. (1973). The Chemistry of Clay Minerals. New York: American Elsevier.

Wedepohl, K. H. (1970). Handbook of Geochemistry (Vol. I and II). Berlin: Springer-Verlag.

Zhao, J., Jin, Z., Jin, Z., Hu, Q., Hu, Z., Du, W., Yan, C., & Geng, Y. (2017). Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks. Marine and Petroleum Geology, 86, 655-674.




How to Cite

Burgan, A. (2024). Geochemical Characteristic of the Carbonaceous Sediments of the Upper Paleozoic Kuantan Group, Malaysia. Indonesian Journal of Earth Sciences, 4(1), A836.