Granulometric and Mineralogical Characterization of Sands from the Middle Course of the Kasai River (Ilebo Territory, Kasai Province, DRC)

Authors

  • Lowny Trésor Madienga Kitshabi Department of Exploration and Production, Faculty of Oil, Gas and Renewable Energies, University of Kinshasa, Kinshasa, D.R. Congo
  • Ivon Ndala Tshiwisa Department of Geosciences, Faculty of Sciences and Technologies, University of Kinshasa, Kinshasa, D.R. Congo
  • Modeste Kisangala Muke Department of Geosciences, Faculty of Sciences and Technologies, University of Kinshasa, Kinshasa, D.R. Congo
  • Thomas Kanika Mayena Department of Geosciences, Faculty of Sciences and Technologies, University of Kinshasa, Kinshasa, D.R. Congo
  • Dominique Wetshondo Osomba Department of Geosciences, Faculty of Sciences and Technologies, University of Kinshasa, Kinshasa, D.R. Congo
  • Valentin Kanda Nkula Department of Geosciences, Faculty of Sciences and Technologies, University of Kinshasa, Kinshasa, D.R. Congo
  • Djonive Munene Asidi Department of Exploration and Production, Faculty of Oil, Gas and Renewable Energies, University of Kinshasa, Kinshasa, D.R. Congo
  • Adalbert-Jules Makutu Department of Geosciences, Faculty of Sciences and Technologies, University of Kinshasa, Kinshasa, D.R. Congo

DOI:

https://doi.org/10.52562/injoes.2024.1041

Keywords:

Characterization, granulometric, mineralogical, sands, middle course, Kasai River

Abstract

This study addresses sediment dynamics within the fluvial system of the middle Kasai Basin, specifically between Ilebo town (pk605) and the confluence with the Loange River (pk525). The primary aim is to characterize the granulometric and mineralogical evolution of sand bars in the Kasai River, which pose navigational challenges in this section of the basin. The study seeks to answer the following question: How do the granulometric and mineralogical characteristics of sands transported by the middle course of the Kasai River evolve? The research employs laboratory granulometric techniques. Twenty sand samples were collected from sand bars along the middle and navigable course of the Kasai River during the flood recession period, ranging from upstream to downstream. Sieving was conducted using an AFNOR-type sieve column, followed by sedimentometric analyses and the calculation of various Folk & Ward textural parameters using the Excel program Gradistat. Additionally, six samples underwent automated mineralogical analysis using a QEMSCAN FEG Quanta 650. Granulometric analysis revealed that the sands from the middle course of the Kasai River are unimodal, with fine to medium grains in the granulometric fraction ranging from 186.2 µm to 426.8 µm. Most of these sands are moderately to well graded, with grains showing granulometric symmetry and, less commonly, fine asymmetry. Their kurtosis is largely mesokurtic, with occasional leptokurtic and platykurtic characteristics, indicating multiple depositional environments. The study demonstrates that the evolution of these granulometric parameters is uneven along the middle course of the Kasai River, though overall, the parameters exhibit limited variation. This suggests minimal and regular sediment inputs, consistent with the relative regularity of granulometric variations in environments characterized by free sedimentation. Automated mineralogical analysis identified a diverse mineralogical assemblage, dominated by quartz, followed by calcite, iron oxides, orthoclase, plagioclase, and kaolinite. Additionally, a group of minerals that do not exceed the 0.55% threshold—such as illite, apatite, ilmenite, muscovite, chlorite, biotite, montmorillonite, rutile, pyrophyllite, siderite, zircon, and dolomite—was identified. Consequently, the mineralogical evolution is not uniform throughout the middle course of the Kasai River, showing a sawtooth variation. This study clarifies the evolution of the granulometric parameters of Kasai River sands, which are influenced by the river's hydrodynamic regime. It also elucidates the mineralogical evolution, linked to the petrographic nature of source areas, which are distributed based on their mechanical resistance to abrasion, chemical alteration, and the morphology of the riverbed. The findings from this research contribute significantly to the field of sedimentology and integrated river management

Downloads

Download data is not yet available.

References

Best, J. L. (1987). Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology. In Recent developments in fluvial sedimentology, 39, 27-35. Society of Economic Paleontologists and Mineralogists Publication.

Blott, S. J., & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237-1248. https://doi.org/10.1002/esp.261

Cailleux, A, & Tricart, J. (1959). Initiation à l’étude des sables et des galets [Introduction to the study of sand and pebbles]. Centre de Documentation Universitaire, Fascicules, Paris 3, 202p. https://www.sudoc.fr/021372004

Censier, C. (1996). Caractérisation de processus d’érosion régressive par analyse sédimentologique comparée des sables du chenal et des barres du cours inférieur de l’Oubangui (République Centrafricaine, Congo, Zaïre) [Characterization of regressive erosion processes by comparative sedimentological analysis of channel sands and bars of the lower course of the Oubangui (Central African Republic, Congo, Zaire)]. In Proceedings of the Conference L’hydrologie Tropicale: Géoscience el Outil Pour le Développement (Vol. 238, pp. 289-303). Wallingford, UK: AISH Publication.

Chaumont, D., Roy, A. G., & Courchesne, F. (1994). Traçage minéralogique de l’origine des sédiments aux confluents de cours d’eau [Mineralogical tracing of the origin of sediments at the confluences of watercourses]. Géographie physique et Quaternaire, 48(2), 195-205. https://doi.org/10.7202/032996ar

Chennaux, G., & Dunoyer de Segonzac, G. (1967). Etude pétrographique de la pyrophyllite du Silurien et du Dévonien au Sahara. Répartition et origine [Petrographic study of Silurian and Devonian pyrophyllite in the Sahara. Distribution and origin]. Sciences Géologiques, bulletins et mémoires, 20(4), 195-210. https://doi.org/10.3406/sgeol.1967.1322

Cojan, I., & Renard, M. (2021). Sédimentologie-3e éd [Sedimentology-3rd ed]. Dunod.

Deconinck, J. F., & Chamley, H. (2011). Bases de sédimentologie-3ème edition [Basics of sedimentology-3rd edition]. Dunod.

Devroey, E. (1939). Le Kasai et son bassin hydrographique. Goemaere printer of the King.

Dryden, A. L., & Dryden, C. (1946). Comparative rates of weathering of some common heavy minerals. Journal of Sedimentary Research, 16(3), 91-96. https://doi.org/10.1306/D426926A-2B26-11D7-8648000102C1865D

Folk, R. L., & Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of sedimentary research, 27(1), 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Fournier, J., Bonnot-Courtois, C., Paris, R., & Le Vot, M. (2012). Analyses granulométriques. Principes et méthodes [Granulometric analyses. Principles and methods]. Centre national de la Recherche scientifique, Dunod. https://hal.science/hal-04648219/

Freise, F. W. (1931). Untersuchung von mineralen auf Abnutzbarkeit bei Verfrachtung im Wasser [Investigation of minerals for wearability when transported in water]. Zeitschrift für Kristallographie, Mineralogie und Petrographie, 41(1), 1-7. https://doi.org/10.1007/BF02949762

Friis, H. (1974). Weathered heavy-mineral associations from the young-Tertiary deposits of Jutland, Denmark. Sedimentary Geology, 12(3), 199-213. https://doi.org/10.1016/0037-0738(74)90010-4

Gandhi, M. S., & Raja, M. (2014). Heavy mineral distribution and geochemical studies of coastal sediments between Besant Nagar and Marakkanam, Tamil Nadu, India. Journal of Radiation Research and Applied Sciences, 7(3), 256-268. https://doi.org/10.1016/j.jrras.2014.06.002

Hjulström, F. (1935). Etudes de l’activité morphologique des rivières illustrée par la rivière Fyris [Studies of Morphological Activity of Rivers as Illustrated by the River Fyris]. Bulletin of the Geological Institute University of Uppsala, 25, 221-527.

Kisangala, M. M. (2008). Analyse des paramètres morphométriques, climatologiques et hydrométriques du bassin du Kasaï, dans sa partie Congolaise [Analysis of morphometric, climatological and hydrometric parameters of the Kasai basin, in its Congolese part] (Unpublished DEA Thesis). Dept. Geosciences, Unikin.

Kisangala, M. M. (2014). Impacts du changement climatique sur la navigabilité de la rivière Kasaï : Approches morphométrique, hydrométrique, climatologique et écologique du bassin du Kasaï dans sa partie Congolaise [Impacts of climate change on the navigability of the Kasai River: Morphometric, hydrometric, climatological and ecological approaches to the Kasai basin in its Congolese part] (Unpublished Doctoral Thesis). Dept. Geosciences, Unikin.

Laraque, A., Moukandi N’kaya, G. D., Orange, D., Tshimanga, R., Tshitenge, J. M., Mahé, G., Nguimalet, C. R., Trigg, M. A., Yepez, S., & Gulemvuga, G. (2020). Recent budget of hydroclimatology and hydrosedimentology of the congo river in central Africa. Water, 12(9), 2613. https://doi.org/10.3390/w12092613

Lepersonne, J. (1974). Geological map of Zaire, scale 1: 2,000,000. Republic of Zaire, Dept. of Mines, Geological Service.

Morton, A. C. (1985). Heavy minerals in provenance studies. In Provenance of arenites (pp. 249-277). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-2809-6_12

Morton, A. C., & Hallsworth, C. (1994). Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90(3-4), 241-256. https://doi.org/10.1016/0037-0738(94)90041-8

Moukandi N'kaya, G. D., Laraque, A., Paturel, J. E., Guzanga, G. G., Mahe, G., & Tshimanga, R. M. (2022). A New Look at Hydrology in the Congo Basin, Based on the Study of Multi?Decadal Time Series. In Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future (pp. 121-143). https://doi.org/10.1002/9781119657002.ch8

Mushi, C. A., Ndomba, P. M., Trigg, M. A., Tshimanga, R. M., & Mtalo, F. (2019). Assessment of basin-scale soil erosion within the Congo River Basin: A review. Catena, 178, 64-76. https://doi.org/10.1016/j.catena.2019.02.030

Mushi, C. A., Ndomba, P. M., Tshimanga, R. M., Trigg, M. A., Neal, J., Bola, G. B., Kabuya, P. M., Carr, A. B., Beya, J. T., Bates, P. D., & Mtalo, F. (2022). Sélection du site, conception et mise en œuvre d'un programme d'échantillonnage des sédiments sur le fleuve Kasaï, un affluent majeur du fleuve Congo [Site selection, design and implementation of a sediment sampling program on the Kasai River, a major tributary of the Congo River]. In Hydrologie, climat et biogéochimie du bassin du Congo: une base pour l'avenir (pp. 441-462). https://doi.org/10.1002/9781119842125.ch22

Pettijohn, F. J. (1941). Persistence of heavy minerals and geologic age. The Journal of Geology, 49(6), 610-625. https://doi.org/10.1086/624992

Pirrie, D., Butcher, A. R., Power, M. R., Gottlieb, P., & Miller, G. L. (2004). Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. Geological Society, London, Special Publications, 232(1), 123-136. https://doi.org/10.1144/GSL.SP.2004.232.01.12

RVF-RDC. 2019. Rapport sur les mesures de la courantométrie de la rivière Kasaï, Rapport inédit de la mission sur terrain [Report on current measurement measurements of the Kasai River]. Unpublished report of the field mission, 32p.

Sternberg, H. (1875). Untersuchungen uber Langen-und Querprofil geschiebefuhrender Flusse [Investigations into the length and cross-section of rivers carrying sediment]. Zeitshrift fur Bauwesen, 25, 483-506.

Thiel, G. A. (1940). The relative resistance to abrasion of mineral grains of sand size. Journal of Sedimentary Research, 10(3), 103-124. https://doi.org/10.1306/D42690A3-2B26-11D7-8648000102C1865D

Thiel, G. A. (1945). Mechanical effects of stream transportation of mineral grains of sand size. Geological Society of America Bulletin, 56(12), 1207).

Thomas, R. L., Kemp, A. L. W., & Lewis, C. F. M. (1972). Distribution, composition and characteristics of the surficial sediments of Lake Ontario. Journal of Sedimentary Research, 42(1), 66-84. https://doi.org/10.1306/74D72491-2B21-11D7-8648000102C1865D

Tine, D., Faye, M., Atoui, A., & Faye, G. (2022). Caractérisation granulométrique et dynamique sédimentaire dans les plages septentrionales des rivières du sud: cas de la basse Casamance [Granulometric characterization and sedimentary dynamics in the northern beaches of southern rivers: case of lower Casamance]. Afrique Science Revue Internationale des Sciences et Technologie 21(3), 157-173.

Touré, M., Kpan, B. C., Wango, T. E., Monde, S., & Dosso, S. (2016). Caractérisation pétro-sédimentaire des cordons littoraux fossiles d’Assinie, Côte d’Ivoire [Petro-sedimentary characterization of fossil coastal ridges of Assinie, Ivory Coast]. Revue Ivoirienne des Sciences et Technologie, 27, 223-236.

Trigg, M. A., & Tshimanga, R. M. (2020). Capacity building in the Congo Basin: Rich resources requiring sustainable development. One Earth, 2(3), 207-210. https://doi.org/10.1016/j.oneear.2020.02.008

Trigg, M. A., Carr, A. B., Smith, M. W., & Tshimanga, R. M. (2022). Mesure des changements géomorphologiques sur le fleuve Congo à l'aide de cartes de navigation centenaires [Measuring geomorphological changes on the Congo River using century-old navigation charts]. In Hydrologie, climat et biogéochimie du bassin du Congo: une base pour l'avenir (pp. 425-439). https://doi.org/10.1002/9781119842125.ch21

Trigg, M. A., Tshimanga, R. M., Ndomba, P. M., Mtalo, F., Hughes, D. A., Mushi, C. A., Bola, G. B., Kabuya, P. M., Carr, A. B., Bernhofen, M., Neal, J., Beya, J., Ngandu, F. K., & Bates, P. D. (2022). Mettre les usagers de la rivière au cœur de la recherche sur l'hydraulique et la morphologie dans le bassin du Congo [Putting river users at the heart of research on hydraulics and morphology in the Congo Basin]. In Hydrologie, climat et biogéochimie du bassin du Congo: une base pour l'avenir (pp. 561-575). https://doi.org/10.1002/9781119842125.ch28

Tshimanga, R. M., Trigg, M. A., Neal, J., Ndomba, P. M., Hughes, D. A., Carr, A. B., Kabuya, P.M, Bola, G. B., Mushi, C. A., Beya, J. T., Nagndu, F. K., Mokango, G. M., Mtalo, F., & Bates, P. D. (2022). Nouvelles mesures de la dynamique de l'eau et du transport des sédiments le long du bief moyen du fleuve Congo et de la rivière Kasaï [New measurements of water dynamics and sediment transport along the middle reach of the Congo River and the Kasai River]. In Hydrologie, climat et biogéochimie du bassin du Congo: une base pour l'avenir (pp. 463-484). https://doi.org/10.1002/9781119842125.ch23

Tshimanga, R. M., Tshitenge, J. M., Kabuya, P., Alsdorf, D., Mahe, G., Kibukusa, G., & Lukanda, V. (2016). A regional perceptive of flood forecasting and disaster management systems for the Congo River Basin. In Flood Forecasting (pp. 87-124). Academic Press. https://doi.org/10.1016/B978-0-12-801884-2.00004-9

Downloads

Published

2024-08-20

How to Cite

Kitshabi, L. T. M., Tshiwisa, I. N. T., Muke, M. K., Thomas Kanika Mayena, T. K., Osomba, D. W. O., Nkula, V. K., Asidi, D. M., & Makutu, A.-J. . (2024). Granulometric and Mineralogical Characterization of Sands from the Middle Course of the Kasai River (Ilebo Territory, Kasai Province, DRC). Indonesian Journal of Earth Sciences, 4(2), A1041. https://doi.org/10.52562/injoes.2024.1041