Petrographic and Diffractometric Analysis of Drill Samples from the Iron Ore Deposits of Zatua Hills, Haut Uélé Province, DRC

Authors

  • Levesque Makuku Mbo Geological and Mining Researches Center (CRGM), Kinshasa, DR Congo | Oil Exploration and Production Department, Faculty of Oil, Gas and Renewable Energies, University of Kinshasa, DR Congo
  • Albert Ongendangenda Tienge Department of Geosciences, Faculty of Science and Technology, University of Kinshasa, B.P. 190 Kinshasa XI, DR Congo

DOI:

https://doi.org/10.52562/injoes.2024.1043

Keywords:

Iron ore, Petrography, Diffractometry, Zatua Hills, DRC

Abstract

Seven samples were selected from various facies of geological formations intersected by the drill holes for petrographic analysis, supplemented by diffractometry. The goal was to identify the mineralogical composition of Banded Iron Formations (BIFs), the associated parageneses, and elements deleterious to the metallurgical processing of iron ore. Field tests, based on geophysical maps, were conducted to identify high-prospectivity sites characterized by low magnetic susceptibility and hematite richness, followed by sampling and drilling to confirm mineralization. Selected samples from characteristic facies in contact with iron ores underwent petrographic analysis using optical and scanning electron microscopy, supported by diffractometric analyses to ensure accurate mineralogical identification. The study revealed the presence of hematitic BIF, predominantly composed of weakly aggregated euhedral and subhedral martite grains, with evidence of some leaching. Magnetite, identified as the protore mineral, has been oxidized by fluid influence into martite (hematite), with a low presence of secondary supergene minerals. Variscite, kaolinite, and gibbsite were the main secondary minerals identified in both petrographic and diffractometric analyses, and are considered sources of phosphorus, aluminum, and silica—elements recognized as harmful in the metallurgical processing of iron and its alloys. These secondary minerals were precipitated within interstitial cavities leached between martite and hematite aggregates, forming a botryoidal texture. The BIFs of the Zatua Hills are primarily composed of hematitic iron ores associated with goethite, microplaty hematite, and secondary supergene minerals, likely formed through fluid circulation along fracture zones, shearing, and folding. Geochemical studies are recommended to complete the analysis, aiming to determine the content of these iron oxides, secondary minerals, and the degree of hydration through loss on ignition.

Downloads

Download data is not yet available.

References

Allibone, A., Vargas, C., Mwandale, E., Kwibisa J., Jongens, R., Quick, S., Komarnisky, N., Fanning, M., Bird, F., MacKenzie, D., Turnbull, R., & Holliday, J. (2020). Orogenic Gold Deposits of the Kibali District, Neoarchean Moto Belt, Northeastern Democratic Republic of Congo. In R. H. Sillitoe, R. J. Goldfarb, F. Robert, & S. F. Simmons, Geology of the World’s Major Gold Deposits and Provinces. Society of Economic Geologists. Society of Economic Geologists, Inc. SEG Special Publications, no. 23, pp. 185–201. https://doi.org/10.5382/SP.23.09

Beukes, N. J., Gutzmer, J., & Mukhopadhyay, J. (2003). The geology and genesis of high-grade hematite iron ore deposits. Applied Earth Science, 112(1), 18-25. https://doi.org/10.1179/037174503225011243

Bird, P. J. (2016). Evolution of the Kibali Granite-Greenstone Belt, North East Democratic Republic of the Congo, and controls on gold mineralisation at the Kibali Gold Deposit (Doctoral dissertation, Kingston University).

Borg, G., Shackleton, R. M. (1997). The Tanzania and NE-Zaire Cratons. In de Wit, M. J., Ashwal, L. D. (Eds.), Greenstone Belts. Oxford University Press, Oxford, pp. 608–619.

BRGM (Bureau de Recherches Géologiques et Minières). (1982). A Geology and Mineral Map of Northeastern DRC Complied from by the BRGM (1980-1982) from a Field Survey in 1976 from Geological Maps Haut Zaire (Uele Area), Haut Zaïre (Ituri Area) at 1:500,000 Scale.

Cahen, L., Snelling, N. J. (1966). The geochronology of Equatorial Africa. North-Holland Publishing Company, Amsterdam.

Cahen, L., Snelling, N. J., Delhal, J., Vail, J. R. (1984). The Geochronology and Evolution of Africa. Oxford Science Publishing, Clarendon Press, Oxford, UK.

Chamberlain, C. M. (2003). Geology and genesis of the Bulyanhulu gold deposit, Sukumaland greenstone belt, Tanzania (Doctoral dissertation, Imperial College London (University of London)).

Champion, D. C., & Sheraton, J. W. (1997). Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. Precambrian Research, 83(1-3), 109-132. https://doi.org/10.1016/S0301-9268(97)00007-7

Clout, J. M. F., and Simonson, B. M., 2005, Precambrian Iron Formations and Iron Formation-Hosted Iron Ore Deposition. In Jeffrey W. Hedenquist J. W., Thompson, J. F. H., Richard J. Goldfarb, R. J., & Richards, J. P. Economic Geology, v. 100th Anniversary (pp. 643-679). https://doi.org/10.5382/AV100.20

Czarnota, K., Champion, D. C., Goscombe, B., Blewett, R. S., Cassidy, K. F., Henson, P. A., & Groenewald, P. B. (2010). Geodynamics of the eastern Yilgarn Craton. Precambrian Research, 183(2), 175-202. https://doi.org/10.1016/j.precamres.2010.08.004

Dalstra, H., Harding, T., Riggs, T., & Taylor, D. (2003). Banded iron formation hosted high-grade hematite deposits, a coherent group?. Applied Earth Science, 112(1), 68-72. https://doi.org/10.1179/037174503225011199

Davis, B. L., Rapp, G., & Walawender, M. J. (1968). Fabric and structural characteristics of the martitization process. American Journal of Science, 266(6), 482-496. https://doi.org/10.2475/ajs.266.6.482

de Wit, M. J., Guillocheau, F., & De Wit, M. C. (Eds.). (2015). Geology and resource potential of the Congo Basin. Springer Science & Business Media.

Goldring, D. C. (2003), Iron ore categorisation for the iron and steel industry. Applied Earth Science, 112(1), 5-17. https://doi.org/10.1179/0371745032501162

Gruner, J. W. (1926). Magnetite-martite-hematite. Economic Geology, 21(4), 375-393. https://doi.org/10.2113/gsecongeo.21.4.375

Gutzmer, J., Mukhopadhyay, J., Beukes, N. J., Pack, A., Hayashi, K., & Sharp, Z. D. (2006). Oxygen isotope composition of hematite and genesis of high-grade BIF-hosted iron ores. In Memoir 198: Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere - Constraints from Ore Deposits (pp.257-268).

Harmsworth, R. A., Kneeshaw, M., Morris, R. C., Robinson, C. J., & Shrivastava, P. K. (1990). BIF-derived iron ores of the Hamersley Province. Geology of the mineral deposits of Australia and Papua New Guinea, 1, 617-642.

Kabete, J. M., Groves, D. I., McNaughton, N. J., & Mruma, A. H. (2012a). A new tectonic and temporal framework for the Tanzanian Shield: implications for gold metallogeny and undiscovered endowment. Ore Geology Reviews, 48, 88-124. https://doi.org/10.1016/j.oregeorev.2012.02.009

Kabete, J. M., McNaughton, N. J., Groves, D. I., & Mruma, A. H. (2012b). Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen. Precambrian Research, 216, 232-266. https://doi.org/10.1016/j.precamres.2012.06.020

Langmuir, D. (1971). Particle size effect on the reaction goethite= hematite+ water. American Journal of Science, 271(2), 147-156. https://doi.org/10.2475/ajs.271.2.147

Lascelles, D. F. (2002). A new look at old rocks—an alternative model for the origin of in situ iron ore deposits derived from banded iron formation. In Proceedings of the Iron Ore 2002 conference, Perth (pp. 107-126).

Lascelles, D. F. (2007). Black smokers and density currents: a uniformitarian model for the genesis of banded iron-formations. Ore Geology Reviews, 32(1-2), 381-411. https://doi.org/10.1016/j.oregeorev.2006.11.005

Lavreau, J. (1973). New data about the kilo-moto gold deposits (Zaïre) I. The district of Mongbwalu. Mineralium Deposita, 8, 1-6. https://doi.org/10.1007/BF00203345

Lavreau, J. (1980). Etude géologique du Zaïre septentrional. Génèse et évolution d’un segment lithosphérique archéen. Unpublished Ph. D. Thesis, Université Libre de Bruxelles.

Lavreau, J. (1982). The Archean and lower Proterozoic of Central Africa. Revista brasileira de geociências, 12(1-3), 187-192.

Lavreau, J. (1984). Vein and stratabound gold deposits of northern Zaire. Mineralium Deposita, 19, 158-165. https://doi.org/10.1007/BF00204680

Lavreau, J., & Ledent, D. (1975). Établissement du cadre géochronologique du Kibalien (Zaire). Annales de la Société géologique de Belgique, 98(1), 197-212.

Link, K., Koehn, D., Barth, M. G., Tiberindwa, J. V., Barifaijo, E., Aanyu, K., & Foley, S. F. (2010). Continuous cratonic crust between the Congo and Tanzania blocks in western Uganda. International Journal of Earth Sciences, 99, 1559-1573. https://doi.org/10.1007/s00531-010-0548-8

Makuku, L. M. (2018). Caractéristiques géologiques et pétrographiques des itabirites des Monts Zatua, Nord-Est de la RDC. Revue de Congo Sciences, 6, 141.

Makuku, L. M., Wetshondo, O. D., Kanda, N. V., Nzambe, K. K., & Ongendangenda, T. A. (2023). Geochemical Signature and Metalogeny of BIFs and Associated Iron Ore of Zatua Hills, Haut-Uele Province (DR Congo). Journal of Geoscience and Environment Protection, 11, 201-217. https://doi.org/10.4236/gep.2023.1110014

Manttari, I., Westerhof, P., Harma, P., Kigereigu, F., Koistinen, T., Kuosmanen, E., Lahaye, Y., Lehtonen, M.I., Makitie, H., Manninen, T., Pokki, J., & Virransalo, P. (2013). Mesoarchean to Neoproterozoic evolution of north Uganda: evidence from new U-Pb rock ages. Abstract, 24rd CAG, Addis Ababa, 8th–14th January.

Manya, S., Kobayashi, K., Maboko, M. A., & Nakamura, E. (2006). Ion microprobe zircon U–Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: Implications for the geological evolution of the Tanzania Craton. Journal of African Earth Sciences, 45(3), 355-366. https://doi.org/10.1016/j.jafrearsci.2006.03.004

Morris, R. C. (1980). A textural and mineralogical study of the relationship of iron ore to banded iron-formation in the Hamersley Iron Province of Western Australia. Economic Geology, 75(2), 184-209. https://doi.org/10.2113/gsecongeo.75.2.184

Morris, R. C., & Wolff, K. H. (1985). Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes—a conceptual model. Handbook of strata-bound and stratiform ore deposits, 13, 73-235.

Morris, R. C. (2003). Iron ore genesis and post-ore metasomatism at Mount Tom Price. Applied Earth Science, 112(1), 56-67. https://doi.org/10.1179/037174503225011216

Morris, R. C., Tompkins, L. A., & Cowan, D. R. (2002). Discussion and Reply Opaque mineralogy and magnetic properties of selected banded iron?formations, Hamersley Basin, Western Australia. Australian Journal of Earth Sciences, 49(3), 579-586. https://doi.org/10.1046/j.0812-0099.2002.00935.x

Nyakecho, C., & Hagemann, S. G. (2014). An overview of gold systems in Uganda. Australian Journal of Earth Sciences, 61(1), 59-88. https://doi.org/10.1080/08120099.2013.831773

Poidevin, J. L. (1985). Le Protérozoïque supérieur de la République centrafricaine. Annales-Musée royal de l'Afrique Centrale. Sciences géologiques, (91).

Powell, C. M., Oliver, N. H., Li, Z. X., Martin, D. M., & Ronaszeki, J. (1999). Synorogenic hydrothermal origin for giant Hamersley iron oxide ore bodies. Geology, 27(2), 175-178. https://doi.org/10.1130/0091-7613(1999)027%3C0175:SHOFGH%3E2.3.CO;2

Roy, S., & Venkatesh, A. S. (2009). Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis. Journal of Earth System Science, 118, 619-641. https://doi.org/10.1007/s12040-009-0056-z

Sanislav, I. V., Wormald, R. J., Dirks, P. H. G. M., Blenkinsop, T. G., Salamba, L., & Joseph, D. (2014). Zircon U–Pb ages and Lu–Hf isotope systematics from late-tectonic granites, Geita Greenstone Belt: Implications for crustal growth of the Tanzania Craton. Precambrian research, 242, 187-204. https://doi.org/10.1016/j.precamres.2013.12.026

Sanislav, I. V., Kolling, S. L., Brayshaw, M., Cook, Y. A., Dirks, P. H., Blenkinsop, T. G., Mturi, M. I., & Ruhega, R. (2015). The geology of the giant Nyankanga gold deposit, Geita Greenstone Belt, Tanzania. Ore Geology Reviews, 69, 1-16. https://doi.org/10.1016/j.oregeorev.2015.02.002

Sanislav, I. V., Brayshaw, M., Kolling, S. L., Dirks, P. H., Cook, Y. A., & Blenkinsop, T. G. (2017). The structural history and mineralization controls of the world-class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania. Mineralium Deposita, 52, 257-279. https://doi.org/10.1007/s00126-016-0660-1

Tompkins, L. A., & Cowan, D. R. (2001). Opaque mineralogy and magnetic properties of selected banded iron?formations, Hamersley Basin, Western Australia. Australian Journal of Earth Sciences, 48(3), 427-437. https://doi.org/10.1046/j.1440-0952.2001.00869.x

Turnbull, R., Allibone, A. H., Fanning, C. M., & Matheys, F. (2017). Geochronology, isotope chemistry, and relative prospectivity of Archean rocks in the northeast Democratic Republic of Congo, central Africa: St. Helier, Jersey, Channel Islands, Randgold Resources Ltd. Unpublished report.

Westerhof, A. B., Härmä, P., Isabirye, E., Katto, E., Koistinen, T., Kuosmanen, E., Lehto, T., Lehtonen, M. I., Makitie, H., Manninen, T., Manttari, I., Pekkala, Y., Pokki, J., Saalmann, K., & Virransalo, P. (2014). Geology and geodynamic development of Uganda with explanation of the 1: 1,000,000 scale geological map. Geological survey of Finland.

Woodtli, R. (1961). Iron ore resources of the North-Eastern Congo. Economic Geology, 56(8), 1385-1391. https://doi.org/10.2113/gsecongeo.56.8.1385

Downloads

Published

2024-09-09

How to Cite

Mbo, L. M., & Tienge, A. O. (2024). Petrographic and Diffractometric Analysis of Drill Samples from the Iron Ore Deposits of Zatua Hills, Haut Uélé Province, DRC. Indonesian Journal of Earth Sciences, 4(2), A1043. https://doi.org/10.52562/injoes.2024.1043